{"title":"Joint optimization of train scheduling and dynamic passenger flow control strategy with headway-dependent demand","authors":"Fuya Yuan, Huijun Sun, Liujiang Kang, Si Zhang","doi":"10.1080/21680566.2022.2025951","DOIUrl":null,"url":null,"abstract":"Focusing on massive demand and high-frequency trains in urban rail transit, this paper proposes a novel joint optimization approach for train scheduling and dynamic passenger flow control strategy under oversaturated conditions to minimize the total number of waiting passengers. In view of the relationship between the number of boarding/alighting passengers and the dwell time of trains, the problem is formulated as a mixed-integer linear programming (MILP) model. This model can achieve the trade-off between the utilization of trains and passengers. The ILOG CPLEX is adopted to solve the proposed model. And a real-world case study of the Beijing Metro Line 5 is given to demonstrate the feasibility and effectiveness. Through jointly optimizing train schedule and flow control, the average boarding rate of passengers increases from 36.34% to 87.55%. The results show that the proposed flow control is effective in alleviating the oversaturated situations at platforms and trains.","PeriodicalId":48872,"journal":{"name":"Transportmetrica B-Transport Dynamics","volume":"10 1","pages":"627 - 651"},"PeriodicalIF":3.4000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportmetrica B-Transport Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21680566.2022.2025951","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 7
Abstract
Focusing on massive demand and high-frequency trains in urban rail transit, this paper proposes a novel joint optimization approach for train scheduling and dynamic passenger flow control strategy under oversaturated conditions to minimize the total number of waiting passengers. In view of the relationship between the number of boarding/alighting passengers and the dwell time of trains, the problem is formulated as a mixed-integer linear programming (MILP) model. This model can achieve the trade-off between the utilization of trains and passengers. The ILOG CPLEX is adopted to solve the proposed model. And a real-world case study of the Beijing Metro Line 5 is given to demonstrate the feasibility and effectiveness. Through jointly optimizing train schedule and flow control, the average boarding rate of passengers increases from 36.34% to 87.55%. The results show that the proposed flow control is effective in alleviating the oversaturated situations at platforms and trains.
期刊介绍:
Transportmetrica B is an international journal that aims to bring together contributions of advanced research in understanding and practical experience in handling the dynamic aspects of transport systems and behavior, and hence the sub-title is set as “Transport Dynamics”.
Transport dynamics can be considered from various scales and scopes ranging from dynamics in traffic flow, travel behavior (e.g. learning process), logistics, transport policy, to traffic control. Thus, the journal welcomes research papers that address transport dynamics from a broad perspective, ranging from theoretical studies to empirical analysis of transport systems or behavior based on actual data.
The scope of Transportmetrica B includes, but is not limited to, the following: dynamic traffic assignment, dynamic transit assignment, dynamic activity-based modeling, applications of system dynamics in transport planning, logistics planning and optimization, traffic flow analysis, dynamic programming in transport modeling and optimization, traffic control, land-use and transport dynamics, day-to-day learning process (model and behavioral studies), time-series analysis of transport data and demand, traffic emission modeling, time-dependent transport policy analysis, transportation network reliability and vulnerability, simulation of traffic system and travel behavior, longitudinal analysis of traveler behavior, etc.