{"title":"Efficient toolpath planning for collaborative material extrusion machines","authors":"Antonio Bacciaglia, A. Ceruti","doi":"10.1108/rpj-09-2022-0320","DOIUrl":null,"url":null,"abstract":"\nPurpose\nTiming constraints affect the manufacturing of traditional large-scale components through the material extrusion technique. Thus, researchers are exploring using many independent and collaborative heads that may work on the same part simultaneously while still producing an appealing final product. The purpose of this paper is to propose a simple and repeatable approach for toolpath planning for gantry-based n independent extrusion heads with effective collision avoidance management.\n\n\nDesign/methodology/approach\nThis research presents an original toolpath planner based on existing slicing software and the traditional structure of G-code files. While the computationally demanding component subdivision task is assigned to computer-aided design and slicing software to build a standard G-code, the proposed algorithm scans the conventional toolpath data file, quickly isolates the instructions of a single extruder and inserts brief pauses between the instructions if the non-priority extruder conflicts with the priority one.\n\n\nFindings\nThe methodology is validated on two real-life industrial large-scale components using architectures with two and four extruders. The case studies demonstrate the method's effectiveness, reducing printing time considerably without affecting the part quality. A static priority strategy is implemented, where one extruder gets priority over the other using a cascade process. The results of this paper demonstrate that different priority strategies reflect on the printing efficiency by a factor equal to the number of extrusion heads.\n\n\nOriginality/value\nTo the best of the authors’ knowledge, this is the first study to produce an original methodology to efficiently plan the extrusion heads' trajectories for a collaborative material extrusion architecture.\n","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Prototyping Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/rpj-09-2022-0320","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Timing constraints affect the manufacturing of traditional large-scale components through the material extrusion technique. Thus, researchers are exploring using many independent and collaborative heads that may work on the same part simultaneously while still producing an appealing final product. The purpose of this paper is to propose a simple and repeatable approach for toolpath planning for gantry-based n independent extrusion heads with effective collision avoidance management.
Design/methodology/approach
This research presents an original toolpath planner based on existing slicing software and the traditional structure of G-code files. While the computationally demanding component subdivision task is assigned to computer-aided design and slicing software to build a standard G-code, the proposed algorithm scans the conventional toolpath data file, quickly isolates the instructions of a single extruder and inserts brief pauses between the instructions if the non-priority extruder conflicts with the priority one.
Findings
The methodology is validated on two real-life industrial large-scale components using architectures with two and four extruders. The case studies demonstrate the method's effectiveness, reducing printing time considerably without affecting the part quality. A static priority strategy is implemented, where one extruder gets priority over the other using a cascade process. The results of this paper demonstrate that different priority strategies reflect on the printing efficiency by a factor equal to the number of extrusion heads.
Originality/value
To the best of the authors’ knowledge, this is the first study to produce an original methodology to efficiently plan the extrusion heads' trajectories for a collaborative material extrusion architecture.
期刊介绍:
Rapid Prototyping Journal concentrates on development in a manufacturing environment but covers applications in other areas, such as medicine and construction. All papers published in this field are scattered over a wide range of international publications, none of which actually specializes in this particular discipline, this journal is a vital resource for anyone involved in additive manufacturing. It draws together important refereed papers on all aspects of AM from distinguished sources all over the world, to give a truly international perspective on this dynamic and exciting area.
-Benchmarking – certification and qualification in AM-
Mass customisation in AM-
Design for AM-
Materials aspects-
Reviews of processes/applications-
CAD and other software aspects-
Enhancement of existing processes-
Integration with design process-
Management implications-
New AM processes-
Novel applications of AM parts-
AM for tooling-
Medical applications-
Reverse engineering in relation to AM-
Additive & Subtractive hybrid manufacturing-
Industrialisation