“One stone two birds” design for hollow spherical Na4Fe3(PO4)2P2O7/C cathode enabled high-performance sodium-ion batteries from iron rust

IF 10.7 Q1 CHEMISTRY, PHYSICAL
EcoMat Pub Date : 2023-07-02 DOI:10.1002/eom2.12393
Yiqing Chen, Chongrui Dong, Long Chen, Chenglong Fu, Yubin Zeng, Qin Wang, Yuliang Cao, Zhongxue Chen
{"title":"“One stone two birds” design for hollow spherical Na4Fe3(PO4)2P2O7/C cathode enabled high-performance sodium-ion batteries from iron rust","authors":"Yiqing Chen,&nbsp;Chongrui Dong,&nbsp;Long Chen,&nbsp;Chenglong Fu,&nbsp;Yubin Zeng,&nbsp;Qin Wang,&nbsp;Yuliang Cao,&nbsp;Zhongxue Chen","doi":"10.1002/eom2.12393","DOIUrl":null,"url":null,"abstract":"<p>Sodium-ion battery (SIB) is considered as a revolutionary technology toward large-scale energy storage applications. Developing cost-effective cathode material as well as economical synthesis procedure is a key challenge for its commercialization. Herein, we develop a facile and economic strategy to simultaneously remove rust from the surface of carbon steel and achieve porous and hollow spherical Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub>/C (HS-NFPP/C). Benefiting from the desirable structure that fastens the electronic/ionic transportation and effectively accommodates the volume expansion/contraction during discharge/charge process, the as-prepared cathode exhibits outstanding rate capability and ultralong cycle life. An extraordinarily high-power density of 32.3 kW kg<sup>−1</sup> with an ultrahigh capacity retention of 89.7% after 10 000 cycles are achieved. More significantly, the 3 Ah HC||HS-NFPP/C full battery manifests impressive cycling stability. Therefore, this work provides an economical and sustainable approach for the massive production of high-performance Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> cathode, which can be potentially commercialized toward SIB applications.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"5 10","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12393","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 4

Abstract

Sodium-ion battery (SIB) is considered as a revolutionary technology toward large-scale energy storage applications. Developing cost-effective cathode material as well as economical synthesis procedure is a key challenge for its commercialization. Herein, we develop a facile and economic strategy to simultaneously remove rust from the surface of carbon steel and achieve porous and hollow spherical Na4Fe3(PO4)2P2O7/C (HS-NFPP/C). Benefiting from the desirable structure that fastens the electronic/ionic transportation and effectively accommodates the volume expansion/contraction during discharge/charge process, the as-prepared cathode exhibits outstanding rate capability and ultralong cycle life. An extraordinarily high-power density of 32.3 kW kg−1 with an ultrahigh capacity retention of 89.7% after 10 000 cycles are achieved. More significantly, the 3 Ah HC||HS-NFPP/C full battery manifests impressive cycling stability. Therefore, this work provides an economical and sustainable approach for the massive production of high-performance Na4Fe3(PO4)2P2O7 cathode, which can be potentially commercialized toward SIB applications.

Abstract Image

“一石二鸟”设计的中空球形Na4Fe3(PO4)2P2O7/C阴极使高性能钠离子电池免于铁锈
钠离子电池(SIB)被认为是大规模储能应用的革命性技术。开发高性价比的正极材料和经济的合成工艺是其商业化的关键挑战。在此,我们开发了一种简单而经济的策略,可以同时去除碳钢表面的锈蚀,并获得多孔空心球形Na4Fe3(PO4)2P2O7/C (HS-NFPP/C)。所制备的阴极具有良好的结构,既能固定电子/离子的传输,又能有效地适应放电/充电过程中的体积膨胀/收缩,具有优异的倍率性能和超长的循环寿命。在10000次循环后,实现了32.3 kW kg−1的超高功率密度和89.7%的超高容量保持率。更重要的是,3 Ah HC / HS-NFPP/C全电池表现出令人印象深刻的循环稳定性。因此,这项工作为大规模生产高性能Na4Fe3(PO4)2P2O7阴极提供了一种经济和可持续的方法,该阴极具有潜在的商业化SIB应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信