Tomasz Kosmala, Anu Baby, Marco Lunardon, Daniele Perilli, Hongsheng Liu, Christian Durante, Cristiana Di Valentin, Stefano Agnoli, Gaetano Granozzi
{"title":"Operando visualization of the hydrogen evolution reaction with atomic-scale precision at different metal–graphene interfaces","authors":"Tomasz Kosmala, Anu Baby, Marco Lunardon, Daniele Perilli, Hongsheng Liu, Christian Durante, Cristiana Di Valentin, Stefano Agnoli, Gaetano Granozzi","doi":"10.1038/s41929-021-00682-2","DOIUrl":null,"url":null,"abstract":"The development of catalysts for the hydrogen evolution reaction is pivotal for the hydrogen economy. Thin iron films covered with monolayer graphene exhibit outstanding catalytic activity, surpassing even that of platinum, as demonstrated by a method based on evaluating the noise in the tunnelling current of electrochemical scanning tunnelling microscopy. Using this approach, we mapped with atomic-scale precision the electrochemical activity of the graphene–iron interface, and determined that single iron atoms trapped within carbon vacancies and curved graphene areas on step edges are exceptionally active. Density functional theory calculations confirmed the sequence of activity obtained experimentally. This work exemplifies the potential of electrochemical scanning tunnelling microscopy as the only technique able to determine both the atomic structure and relative catalytic performance of atomically well-defined sites in electrochemical operando conditions and provides a detailed rationale for the design of novel catalysts based on cheap and abundant metals such as iron. Establishing structure–activity relationships is crucial for the design of improved catalysts. Now, by developing a method based on electrochemical scanning tunnelling microscopy, the active sites of graphene/iron/platinum interfaces are visualized with atomic-scale precision in real time during the hydrogen evolution reaction.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"4 10","pages":"850-859"},"PeriodicalIF":42.8000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-021-00682-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 54
Abstract
The development of catalysts for the hydrogen evolution reaction is pivotal for the hydrogen economy. Thin iron films covered with monolayer graphene exhibit outstanding catalytic activity, surpassing even that of platinum, as demonstrated by a method based on evaluating the noise in the tunnelling current of electrochemical scanning tunnelling microscopy. Using this approach, we mapped with atomic-scale precision the electrochemical activity of the graphene–iron interface, and determined that single iron atoms trapped within carbon vacancies and curved graphene areas on step edges are exceptionally active. Density functional theory calculations confirmed the sequence of activity obtained experimentally. This work exemplifies the potential of electrochemical scanning tunnelling microscopy as the only technique able to determine both the atomic structure and relative catalytic performance of atomically well-defined sites in electrochemical operando conditions and provides a detailed rationale for the design of novel catalysts based on cheap and abundant metals such as iron. Establishing structure–activity relationships is crucial for the design of improved catalysts. Now, by developing a method based on electrochemical scanning tunnelling microscopy, the active sites of graphene/iron/platinum interfaces are visualized with atomic-scale precision in real time during the hydrogen evolution reaction.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.