Improved shock-reloading technique for dynamic yield strength measurements

IF 1.7 4区 工程技术 Q3 MECHANICS
X. Li, Z. Duan, X. Nan, Y. Gan, Y. Yu, J. Hu
{"title":"Improved shock-reloading technique for dynamic yield strength measurements","authors":"X. Li,&nbsp;Z. Duan,&nbsp;X. Nan,&nbsp;Y. Gan,&nbsp;Y. Yu,&nbsp;J. Hu","doi":"10.1007/s00193-022-01110-5","DOIUrl":null,"url":null,"abstract":"<div><p>The imperfection of shock-reloading experiments has become the main obstacle to measuring the dynamic yield strength of materials under shock compression within the framework of the self-consistent strength-measuring method. In this work, we report an improved shock-reloading technique, in which additional layers of high-hardness materials are used as the backing of the two-layer impactor to eliminate the impactor’s distortion and thus overcome the long-standing debonding issue during launching. This technique has the merits of easy accessibility, no modification of material properties, and being applicable to any materials, therefore providing a practicable and reliable way to obtain high-quality reloading data. As a demonstration, we adopt this technique to shock-reloading experiments in aluminum up to 71 GPa and record high-quality particle-velocity profiles with the details of the quasi-elastic reloading from the initial shocked state. The dynamic yield strengths are then determined using the self-consistent method and found to be consistent with data available in the literature.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00193-022-01110-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

Abstract

The imperfection of shock-reloading experiments has become the main obstacle to measuring the dynamic yield strength of materials under shock compression within the framework of the self-consistent strength-measuring method. In this work, we report an improved shock-reloading technique, in which additional layers of high-hardness materials are used as the backing of the two-layer impactor to eliminate the impactor’s distortion and thus overcome the long-standing debonding issue during launching. This technique has the merits of easy accessibility, no modification of material properties, and being applicable to any materials, therefore providing a practicable and reliable way to obtain high-quality reloading data. As a demonstration, we adopt this technique to shock-reloading experiments in aluminum up to 71 GPa and record high-quality particle-velocity profiles with the details of the quasi-elastic reloading from the initial shocked state. The dynamic yield strengths are then determined using the self-consistent method and found to be consistent with data available in the literature.

Abstract Image

用于动态屈服强度测量的改进冲击再加载技术
冲击再加载实验的不完善已成为在自洽强度测量方法框架内测量材料在冲击压缩下动态屈服强度的主要障碍。在这项工作中,我们报告了一种改进的冲击重装技术,其中使用额外的高硬度材料层作为两层冲击器的衬底,以消除冲击器的变形,从而克服了发射过程中长期存在的脱粘问题。该技术具有易操作、不改变材料性能、适用于任何材料等优点,为获得高质量的再加载数据提供了一种切实可行、可靠的方法。为了证明这一点,我们将该技术应用于高达71 GPa的铝的冲击再加载实验,并记录了高质量的颗粒速度曲线,其中包含了从初始冲击状态开始的准弹性再加载的细节。然后使用自洽方法确定动态屈服强度,并发现与文献中可用的数据一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Shock Waves
Shock Waves 物理-力学
CiteScore
4.10
自引率
9.10%
发文量
41
审稿时长
17.4 months
期刊介绍: Shock Waves provides a forum for presenting and discussing new results in all fields where shock and detonation phenomena play a role. The journal addresses physicists, engineers and applied mathematicians working on theoretical, experimental or numerical issues, including diagnostics and flow visualization. The research fields considered include, but are not limited to, aero- and gas dynamics, acoustics, physical chemistry, condensed matter and plasmas, with applications encompassing materials sciences, space sciences, geosciences, life sciences and medicine. Of particular interest are contributions which provide insights into fundamental aspects of the techniques that are relevant to more than one specific research community. The journal publishes scholarly research papers, invited review articles and short notes, as well as comments on papers already published in this journal. Occasionally concise meeting reports of interest to the Shock Waves community are published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信