{"title":"Using student science to identify research priority areas for air pollution in a university environment: an Ethiopian case study","authors":"Jan Dirk Dingemanse, Muse Abayneh Abiyu, Kirubel Getachew Tesfaye, Feyera Fekadu Roro","doi":"10.17159/caj/2022/32/2.13470","DOIUrl":null,"url":null,"abstract":"Students in a country like Ethiopia face a double air pollution challenge: they are frequently exposed (both outdoors and indoors) to sources of incomplete combustion and therefore to unhealthy concentrations of particulate matter (PM2.5) and carbon monoxide (CO), while they also face increased carbon dioxide (CO2) concentrations in crowded dormitories and classrooms. Research on air pollution in the environment of Ethiopian students is scarce. This lack of research can be fixed by involving students in science through a student science project, essentially a subset of citizen science. Students of Arba Minch University, Ethiopia, conducted measurements of PM2.5, CO, and CO2 under self-selected circumstances. Their measurements are compared to guideline values related to health effects to identify priority areas for future research. For PM2.5, students’ measurements show likely exceedances of guideline values for an inside coffee ceremony, close to open waste burning, at a bus station and close to a diesel generator. For CO, exceedances are revealed in kitchens and the visitor’s area of restaurants using biomass fuel, close to outdoor charcoal cooking and close to waste burning. For CO2, exceedances are found within student dormitories. These areas can be considered priority areas for further research. Students can conduct additional measurements to distinguish other relevant scenarios. Insight into exposure can be improved if, besides different concentrations under different circumstances, also time durations of these different circumstances are studied. The findings reveal that students themselves can be a partial solution to research and resource gaps in their context.","PeriodicalId":37511,"journal":{"name":"Clean Air Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean Air Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17159/caj/2022/32/2.13470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Students in a country like Ethiopia face a double air pollution challenge: they are frequently exposed (both outdoors and indoors) to sources of incomplete combustion and therefore to unhealthy concentrations of particulate matter (PM2.5) and carbon monoxide (CO), while they also face increased carbon dioxide (CO2) concentrations in crowded dormitories and classrooms. Research on air pollution in the environment of Ethiopian students is scarce. This lack of research can be fixed by involving students in science through a student science project, essentially a subset of citizen science. Students of Arba Minch University, Ethiopia, conducted measurements of PM2.5, CO, and CO2 under self-selected circumstances. Their measurements are compared to guideline values related to health effects to identify priority areas for future research. For PM2.5, students’ measurements show likely exceedances of guideline values for an inside coffee ceremony, close to open waste burning, at a bus station and close to a diesel generator. For CO, exceedances are revealed in kitchens and the visitor’s area of restaurants using biomass fuel, close to outdoor charcoal cooking and close to waste burning. For CO2, exceedances are found within student dormitories. These areas can be considered priority areas for further research. Students can conduct additional measurements to distinguish other relevant scenarios. Insight into exposure can be improved if, besides different concentrations under different circumstances, also time durations of these different circumstances are studied. The findings reveal that students themselves can be a partial solution to research and resource gaps in their context.
Clean Air JournalEnvironmental Science-Management, Monitoring, Policy and Law
CiteScore
1.80
自引率
0.00%
发文量
16
审稿时长
8 weeks
期刊介绍:
Clean Air Journal is the official publication of the National Association for Clean Air, a not-for-profit organisation. Clean Air Journal is a peer-reviewed journal for those interested in air quality, air quality management, and the impacts of air pollution relevant to Africa. The focus of the journal includes, but is not limited to: Impacts of human activities and natural processes on ambient air quality Air quality and climate change linkages Air pollution mitigation technologies and applications Matters of public policy regarding air quality management Measurement and analysis of ambient and indoor air pollution Atmospheric modelling application and development Atmospheric emissions Other topics on atmospheric physics or chemistry with particular relevance to Africa The scope of the journal is broad, but the core theme of the journal is air quality in Africa.