Development and calibration of reduced-size plate thermometer for measuring incident heat flux

IF 1.9 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
Hong-Seok Yun, Ho-Sik Han, Cheol-Hong Hwang
{"title":"Development and calibration of reduced-size plate thermometer for measuring incident heat flux","authors":"Hong-Seok Yun, Ho-Sik Han, Cheol-Hong Hwang","doi":"10.1177/0734904120958602","DOIUrl":null,"url":null,"abstract":"This study proposes a new reduced-size plate thermometer with a modified shape and improved insulation performance in order to resolve problems commonly found when using conventional plate thermometers to measure incident heat flux in fire environments, for example, a low spatial resolution caused by the large plate area and a non-uniform temperature distribution on the plate. The main results of this study showed that the new plate thermometer exhibits high spatial temperature uniformity, and that the plate thermometer can be reduced in size to 30 mm. Moreover, it was found that the relative error of the incident heat flux of the plate thermometer was substantially reduced compared to that of a heat flux meter using a conduction correction factor expressed as a third-order polynomial function of heat flux, rather than using an average empirical constant calculated from measurement over a wide range of heat fluxes. Finally, it was confirmed that the incident heat flux measured by the new reduced-size plate thermometer in a heptane pool fire was in good agreement with the heat flux meter measurements during the rapid-fire growth, fully developed and decay phases of a fire.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2020-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0734904120958602","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fire Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0734904120958602","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

This study proposes a new reduced-size plate thermometer with a modified shape and improved insulation performance in order to resolve problems commonly found when using conventional plate thermometers to measure incident heat flux in fire environments, for example, a low spatial resolution caused by the large plate area and a non-uniform temperature distribution on the plate. The main results of this study showed that the new plate thermometer exhibits high spatial temperature uniformity, and that the plate thermometer can be reduced in size to 30 mm. Moreover, it was found that the relative error of the incident heat flux of the plate thermometer was substantially reduced compared to that of a heat flux meter using a conduction correction factor expressed as a third-order polynomial function of heat flux, rather than using an average empirical constant calculated from measurement over a wide range of heat fluxes. Finally, it was confirmed that the incident heat flux measured by the new reduced-size plate thermometer in a heptane pool fire was in good agreement with the heat flux meter measurements during the rapid-fire growth, fully developed and decay phases of a fire.
用于测量入射热通量的小尺寸板温度计的研制和校准
为了解决传统平板温度计在火灾环境中测量入射热流时,由于平板面积大、平板温度分布不均匀导致空间分辨率低的问题,本研究提出了一种外形改进、保温性能提高的小尺寸平板温度计。本研究的主要结果表明,新型平板温度计具有较高的空间温度均匀性,并且可以将平板温度计的尺寸缩小到30 mm。此外,研究发现,与热流计相比,使用以热流计的三阶多项式函数表示的传导校正因子,而不是使用在广泛的热流计范围内测量计算的平均经验常数,大大减少了平板温度计入射热流的相对误差。最后,验证了新型缩小板测温仪在庚烷池火灾中测量的入射热流密度与热流密度计在火灾快速生长、充分发育和衰减阶段的测量结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Fire Sciences
Journal of Fire Sciences 工程技术-材料科学:综合
CiteScore
4.00
自引率
0.00%
发文量
14
审稿时长
2.5 months
期刊介绍: The Journal of Fire Sciences is a leading journal for the reporting of significant fundamental and applied research that brings understanding of fire chemistry and fire physics to fire safety. Its content is aimed toward the prevention and mitigation of the adverse effects of fires involving combustible materials, as well as development of new tools to better address fire safety needs. The Journal of Fire Sciences covers experimental or theoretical studies of fire initiation and growth, flame retardant chemistry, fire physics relative to material behavior, fire containment, fire threat to people and the environment and fire safety engineering. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信