Handenur Esen , Neslihan Ozdemir , Aydin Secer , Mustafa Bayram
{"title":"Traveling wave structures of some fourth-order nonlinear partial differential equations","authors":"Handenur Esen , Neslihan Ozdemir , Aydin Secer , Mustafa Bayram","doi":"10.1016/j.joes.2021.12.006","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a large family of the traveling wave solutions to the two fourth-order nonlinear partial differential equations utilizing the Riccati-Bernoulli sub-ODE method. In this method, utilizing a traveling wave transformation with the aid of the Riccati-Bernoulli equation, the fourth-order equation can be transformed into a set of algebraic equations. Solving the set of algebraic equations, we acquire the novel exact solutions of the integrable fourth-order equations presented in this research paper. The physical interpretation of the nonlinear models are also detailed through the exact solutions, which demonstrate the effectiveness of the presented method.The Bäcklund transformation can produce an infinite sequence of solutions of the given two fourth-order nonlinear partial differential equations. Finally, 3D graphs of some derived solutions in this paper are depicted through suitable parameter values.</p></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ocean Engineering and Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246801332100139X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 7
Abstract
This study presents a large family of the traveling wave solutions to the two fourth-order nonlinear partial differential equations utilizing the Riccati-Bernoulli sub-ODE method. In this method, utilizing a traveling wave transformation with the aid of the Riccati-Bernoulli equation, the fourth-order equation can be transformed into a set of algebraic equations. Solving the set of algebraic equations, we acquire the novel exact solutions of the integrable fourth-order equations presented in this research paper. The physical interpretation of the nonlinear models are also detailed through the exact solutions, which demonstrate the effectiveness of the presented method.The Bäcklund transformation can produce an infinite sequence of solutions of the given two fourth-order nonlinear partial differential equations. Finally, 3D graphs of some derived solutions in this paper are depicted through suitable parameter values.
期刊介绍:
The Journal of Ocean Engineering and Science (JOES) serves as a platform for disseminating original research and advancements in the realm of ocean engineering and science.
JOES encourages the submission of papers covering various aspects of ocean engineering and science.