Muhammad Azzam A. Wahab, Ely Salwana Mat Surin, Norshita Mat Nayan, Hameedur Rahman
{"title":"MAPPING DEFORESTATION IN PERMANENT FOREST RESERVE OF PENINSULAR MALAYSIA WITH MULTI-TEMPORAL SAR IMAGERY AND U-NET BASED SEMANTIC SEGMENTATION","authors":"Muhammad Azzam A. Wahab, Ely Salwana Mat Surin, Norshita Mat Nayan, Hameedur Rahman","doi":"10.22452/mjcs.sp2021no2.2","DOIUrl":null,"url":null,"abstract":"Deforestation is the long-term or permanent conversion of forest land to other uses, such as agriculture, mining, and urban development. As a result, deforestation has catastrophic consequences for the environment, including the loss of biodiversity, disruption of clean water supplies, and the acceleration of climate change. According to statistics, the deforestation trend in developing countries is at an alarming rate including Malaysia where plantation activities are the primary cause of forest loss. Recent anecdotal studies have demonstrated the effectiveness of the deep learning-based (DL) approach in producing deforestation maps. However, there are limited studies concentrating on DL approach for synthetic aperture radar (SAR) imaging due to complexity of the computational concepts of the method. The SAR imagery can be challenging to interpret but its all-weather and all-day capability can be critical in forest monitoring compared to optical imagery. Thus, in this study, we propose to map deforestation areas in Permanent Forest Reserve (HSK) using multi-temporal Sentinel-1 SAR data. Deep learning-based U-Net was employed to classify the SAR imagery as forest and non-forest due to its semantic segmentation capabilities. The experiment results showed that the proposed deep learning-based technique successfully achieved 0.993 of intersection over union (IoU) and 0.980 of overall accuracy (OA). Also, we explained the entire procedure from beginning to end as simple as possible for beginners to comprehend. In brief, the findings of this study have the potential to improve monitoring of damaged HSK areas, prioritize the restoration of the affected forest areas and protecting the forest lands from illegal deforestation activities.","PeriodicalId":49894,"journal":{"name":"Malaysian Journal of Computer Science","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.22452/mjcs.sp2021no2.2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Deforestation is the long-term or permanent conversion of forest land to other uses, such as agriculture, mining, and urban development. As a result, deforestation has catastrophic consequences for the environment, including the loss of biodiversity, disruption of clean water supplies, and the acceleration of climate change. According to statistics, the deforestation trend in developing countries is at an alarming rate including Malaysia where plantation activities are the primary cause of forest loss. Recent anecdotal studies have demonstrated the effectiveness of the deep learning-based (DL) approach in producing deforestation maps. However, there are limited studies concentrating on DL approach for synthetic aperture radar (SAR) imaging due to complexity of the computational concepts of the method. The SAR imagery can be challenging to interpret but its all-weather and all-day capability can be critical in forest monitoring compared to optical imagery. Thus, in this study, we propose to map deforestation areas in Permanent Forest Reserve (HSK) using multi-temporal Sentinel-1 SAR data. Deep learning-based U-Net was employed to classify the SAR imagery as forest and non-forest due to its semantic segmentation capabilities. The experiment results showed that the proposed deep learning-based technique successfully achieved 0.993 of intersection over union (IoU) and 0.980 of overall accuracy (OA). Also, we explained the entire procedure from beginning to end as simple as possible for beginners to comprehend. In brief, the findings of this study have the potential to improve monitoring of damaged HSK areas, prioritize the restoration of the affected forest areas and protecting the forest lands from illegal deforestation activities.
期刊介绍:
The Malaysian Journal of Computer Science (ISSN 0127-9084) is published four times a year in January, April, July and October by the Faculty of Computer Science and Information Technology, University of Malaya, since 1985. Over the years, the journal has gained popularity and the number of paper submissions has increased steadily. The rigorous reviews from the referees have helped in ensuring that the high standard of the journal is maintained. The objectives are to promote exchange of information and knowledge in research work, new inventions/developments of Computer Science and on the use of Information Technology towards the structuring of an information-rich society and to assist the academic staff from local and foreign universities, business and industrial sectors, government departments and academic institutions on publishing research results and studies in Computer Science and Information Technology through a scholarly publication. The journal is being indexed and abstracted by Clarivate Analytics'' Web of Science and Elsevier''s Scopus