Wang Qing-ping, Wang Fei, Zhang Wen-chao, Zhang Wei-feng
{"title":"Influences of unbalance phase combination on the dynamic characteristics for a turboprop engine","authors":"Wang Qing-ping, Wang Fei, Zhang Wen-chao, Zhang Wei-feng","doi":"10.1515/tjj-2023-0023","DOIUrl":null,"url":null,"abstract":"Abstract To reduce excessive vibration of a turboprop engine with qualified balanced compressor and turbine rotor, the finite element model of the rotor system was established. The magnitude, axial distribution and especially the phase combinations of the residual unbalances were considered and optimized. Based on the numerical results, the whole engine tests were conducted for verification. The numerical and experimental results show that the vibration level of the rotor system can be significantly reduced by only changing the phase combination of the residual unbalances. The magnitude, axial distribution of residual unbalance and rotational speed of the rotor play a very important role in determining the optimal phase combination. The optimal phase combination under different rotational speeds might be conflicting, and reasonably designed optimization would be a feasible solution. The findings of the research can provide important reference for the design and troubleshooting for similar industrial turbine engines.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbo & Jet-Engines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tjj-2023-0023","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract To reduce excessive vibration of a turboprop engine with qualified balanced compressor and turbine rotor, the finite element model of the rotor system was established. The magnitude, axial distribution and especially the phase combinations of the residual unbalances were considered and optimized. Based on the numerical results, the whole engine tests were conducted for verification. The numerical and experimental results show that the vibration level of the rotor system can be significantly reduced by only changing the phase combination of the residual unbalances. The magnitude, axial distribution of residual unbalance and rotational speed of the rotor play a very important role in determining the optimal phase combination. The optimal phase combination under different rotational speeds might be conflicting, and reasonably designed optimization would be a feasible solution. The findings of the research can provide important reference for the design and troubleshooting for similar industrial turbine engines.
期刊介绍:
The Main aim and scope of this Journal is to help improve each separate components R&D and superimpose separated results to get integrated systems by striving to reach the overall advanced design and benefits by integrating: (a) Physics, Aero, and Stealth Thermodynamics in simulations by flying unmanned or manned prototypes supported by integrated Computer Simulations based on: (b) Component R&D of: (i) Turbo and Jet-Engines, (ii) Airframe, (iii) Helmet-Aiming-Systems and Ammunition based on: (c) Anticipated New Programs Missions based on (d) IMPROVED RELIABILITY, DURABILITY, ECONOMICS, TACTICS, STRATEGIES and EDUCATION in both the civil and military domains of Turbo and Jet Engines.
The International Journal of Turbo & Jet Engines is devoted to cutting edge research in theory and design of propagation of jet aircraft. It serves as an international publication organ for new ideas, insights and results from industry and academic research on thermodynamics, combustion, behavior of related materials at high temperatures, turbine and engine design, thrust vectoring and flight control as well as energy and environmental issues.