G. Awchat, Abhishek Patil, Ashish More, Gopal Dhanjode
{"title":"Incremental Dynamic Analysis and Seismic Fragility Analysis of Reinforced Concrete Frame","authors":"G. Awchat, Abhishek Patil, Ashish More, Gopal Dhanjode","doi":"10.2478/cee-2023-0039","DOIUrl":null,"url":null,"abstract":"Abstract Due to technological developments in last decade, new methods of seismic evaluation are in use like simulation based, algorithm based, probabilistic, software based etc. These developments have enabled researchers to move from linear to non-linear methods of analysis. Incremental dynamic analysis (IDA) is performance evaluation method where a suite of ground motions applied to structure are further scaled to particular levels of seismic intensity. Seismic fragility curves become significant in estimation of structures risk possibility from the point of view of potential earthquakes and helps in predicting the economic consequences for forthcoming earthquakes. The paper reflects IDA and seismic fragility analysis of ground storey + 7 floor (G + 7) reinforced concrete frame subjected to suite of eleven ground motions. Primary objective was to perform equivalent static and linear-dynamic analysis to meet the National and International codal requirements. Then, pushover analysis is carried out by introducing parametric auto hinges as per ASCE 41-13 tables. To carry out pushover analysis, both geometric and material non-linearity was introduced. Strong ground motions were selected as per suitable criteria of seismic intensity. IDA is then carried out as per SeismoStruct 2022 software and using IDA curves, the fragility analysis was carried out. The results of study found useful for researchers to predict the probability of damage of the structure under earthquakes.","PeriodicalId":42034,"journal":{"name":"Civil and Environmental Engineering","volume":"19 1","pages":"444 - 451"},"PeriodicalIF":1.1000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cee-2023-0039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Due to technological developments in last decade, new methods of seismic evaluation are in use like simulation based, algorithm based, probabilistic, software based etc. These developments have enabled researchers to move from linear to non-linear methods of analysis. Incremental dynamic analysis (IDA) is performance evaluation method where a suite of ground motions applied to structure are further scaled to particular levels of seismic intensity. Seismic fragility curves become significant in estimation of structures risk possibility from the point of view of potential earthquakes and helps in predicting the economic consequences for forthcoming earthquakes. The paper reflects IDA and seismic fragility analysis of ground storey + 7 floor (G + 7) reinforced concrete frame subjected to suite of eleven ground motions. Primary objective was to perform equivalent static and linear-dynamic analysis to meet the National and International codal requirements. Then, pushover analysis is carried out by introducing parametric auto hinges as per ASCE 41-13 tables. To carry out pushover analysis, both geometric and material non-linearity was introduced. Strong ground motions were selected as per suitable criteria of seismic intensity. IDA is then carried out as per SeismoStruct 2022 software and using IDA curves, the fragility analysis was carried out. The results of study found useful for researchers to predict the probability of damage of the structure under earthquakes.