Mariana Albarello, Ana Luiza Barrachini Nunes, Liara Jalime Vernier, Fernanda de Castilhos
{"title":"Methyl Esters Production from Degummed Soybean Oil Catalyzed by Niobium Phosphate","authors":"Mariana Albarello, Ana Luiza Barrachini Nunes, Liara Jalime Vernier, Fernanda de Castilhos","doi":"10.1007/s12155-023-10653-z","DOIUrl":null,"url":null,"abstract":"<div><p>The present study aimed a significant investigation of interesterification reaction to produce fatty acid methyl esters (FAME) from degummed soybean oil (DSO) in pressurized methyl acetate (MeA) catalyzed by niobium phosphate (NbOPO<sub>4</sub>). It investigated a glycerol-free route for biodiesel production from a low-cost feedstock concerning the problem of high cost and surplus glycerol production. NbOPO<sub>4</sub> was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and nitrogen adsorption/desorption. Important factors in FAME production including temperature, catalyst content, and DSO:MeA molar ratio (MR) were investigated through an experimental design in two reaction times (60 min and 180 min). Response surface methodology was used to optimize important reaction variables. It was possible to obtain an FAME yield of 87.48% at 345 °C, 8 wt% of catalyst, and an MR of 1:35 in 60 min of reaction. The decomposition phenomenon was evident, achieving 64.14% at 345 °C and 8 wt% of catalyst, mainly due to prolonged exposure to large amounts of catalyst and high temperatures. The catalyst was shown to be active in the experimental conditions investigated. The reuse test pointed out a decrease in activity of up to 34.59%, which may be related to the adsorption of contaminants and mass loss.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 1","pages":"518 - 531"},"PeriodicalIF":3.1000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioEnergy Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12155-023-10653-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The present study aimed a significant investigation of interesterification reaction to produce fatty acid methyl esters (FAME) from degummed soybean oil (DSO) in pressurized methyl acetate (MeA) catalyzed by niobium phosphate (NbOPO4). It investigated a glycerol-free route for biodiesel production from a low-cost feedstock concerning the problem of high cost and surplus glycerol production. NbOPO4 was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and nitrogen adsorption/desorption. Important factors in FAME production including temperature, catalyst content, and DSO:MeA molar ratio (MR) were investigated through an experimental design in two reaction times (60 min and 180 min). Response surface methodology was used to optimize important reaction variables. It was possible to obtain an FAME yield of 87.48% at 345 °C, 8 wt% of catalyst, and an MR of 1:35 in 60 min of reaction. The decomposition phenomenon was evident, achieving 64.14% at 345 °C and 8 wt% of catalyst, mainly due to prolonged exposure to large amounts of catalyst and high temperatures. The catalyst was shown to be active in the experimental conditions investigated. The reuse test pointed out a decrease in activity of up to 34.59%, which may be related to the adsorption of contaminants and mass loss.
期刊介绍:
BioEnergy Research fills a void in the rapidly growing area of feedstock biology research related to biomass, biofuels, and bioenergy. The journal publishes a wide range of articles, including peer-reviewed scientific research, reviews, perspectives and commentary, industry news, and government policy updates. Its coverage brings together a uniquely broad combination of disciplines with a common focus on feedstock biology and science, related to biomass, biofeedstock, and bioenergy production.