Zihua Li , Bingang Xu , Jing Han , Di Tan , Junxian Huang , Yuanyuan Gao , Hong Fu
{"title":"Surface-modified liquid metal nanocapsules derived multiple triboelectric composites for efficient energy harvesting and wearable self-powered sensing","authors":"Zihua Li , Bingang Xu , Jing Han , Di Tan , Junxian Huang , Yuanyuan Gao , Hong Fu","doi":"10.1016/j.cej.2023.141737","DOIUrl":null,"url":null,"abstract":"<div><p>Liquid metal (LM) has been widely used as flexible electrodes for triboelectric nanogenerators (TENGs). However, the development of high-performance triboelectric composites based on LM droplets is still challenging due to the mismatched surface tension. Here, copolymer surface-modified LM nanocapsules (CPLM NCs) with core–shell structure are successfully synthesized <em>via</em> two-step method containing chelation reaction and <em>in situ</em> free-radical polymerization. The as-synthesized NCs can be incorporated into various polymers to fabricate diverse flexible polymer/NCs nanocomposites. Based on surface engineering, CPLM will not leak and drop off from nanocomposites when they suffer severe deformations, exhibiting good interfacial compatibility and robust mechanical properties. The introduction of NCs can improve the charge storage capability and electric outputs of various nanocomposites owing to more interfacial polarization sites, showing a versatile strategy for manufacturing high-powered triboelectric composites. The optimized polydimethylsiloxane/NCs-based TENG (PDMS/NCs-TENG) delivers a significant enhancement of power density by 28.3-fold and can availably power wearable electronics. PDMS/NCs-TENG can be also developed as a wearable self-powered sensor to detect physiological signals and joint-related motions in a real-time, rapid, and noninvasive way. This work not only renders a versatile strategy for the development of high-performance triboelectric materials but also provides a sustainable energy solution for wearable electronics.</p></div>","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"460 ","pages":"Article 141737"},"PeriodicalIF":13.2000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385894723004680","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 2
Abstract
Liquid metal (LM) has been widely used as flexible electrodes for triboelectric nanogenerators (TENGs). However, the development of high-performance triboelectric composites based on LM droplets is still challenging due to the mismatched surface tension. Here, copolymer surface-modified LM nanocapsules (CPLM NCs) with core–shell structure are successfully synthesized via two-step method containing chelation reaction and in situ free-radical polymerization. The as-synthesized NCs can be incorporated into various polymers to fabricate diverse flexible polymer/NCs nanocomposites. Based on surface engineering, CPLM will not leak and drop off from nanocomposites when they suffer severe deformations, exhibiting good interfacial compatibility and robust mechanical properties. The introduction of NCs can improve the charge storage capability and electric outputs of various nanocomposites owing to more interfacial polarization sites, showing a versatile strategy for manufacturing high-powered triboelectric composites. The optimized polydimethylsiloxane/NCs-based TENG (PDMS/NCs-TENG) delivers a significant enhancement of power density by 28.3-fold and can availably power wearable electronics. PDMS/NCs-TENG can be also developed as a wearable self-powered sensor to detect physiological signals and joint-related motions in a real-time, rapid, and noninvasive way. This work not only renders a versatile strategy for the development of high-performance triboelectric materials but also provides a sustainable energy solution for wearable electronics.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.