Elastohydrodynamic analysis of a journal bearing with different grade oils considering thermal and cavitation effects using CFD-FSI

Q3 Engineering
Diagnostyka Pub Date : 2023-05-28 DOI:10.29354/diag/166102
Z. Kadhim, Liqaa Abd-Alshaheed, Fatima Rahima, A. Ridha
{"title":"Elastohydrodynamic analysis of a journal bearing with different grade oils considering thermal and cavitation effects using CFD-FSI","authors":"Z. Kadhim, Liqaa Abd-Alshaheed, Fatima Rahima, A. Ridha","doi":"10.29354/diag/166102","DOIUrl":null,"url":null,"abstract":"This paper investigates a three-dimensional CFD analysis of hydrodynamic journal bearing performance for two different available types of lubricants, SEA 10W50 and SEA 15W40, considering thermal, elastic deformation, and cavitation effects. A 3-dimensional CFD model founded on continuity, momentum, energy, in addition elasticity equations has been implemented. The analysis is performed for a bearing with different journal speeds (1000-3000rpm) and eccentricity ratios (0.1-0.9). The cavitation effect was considered using the model of Zwart–Gerber–Balamri multiphase flow model. The bearing material elastic deformation was considered by implementing the two-way FSI technique through ANSYS-FLUENT 2019 R2. A comparative study of the oil film temperature, thermal pressure, also the load capacity by the bearing has been performed. By comparing the current work's oil film temperature results with those obtained by Ferron et al (1983), with a maximum deviation between the results not exceeding 3 percent, the mathematical model was validated. The findings demonstrate that, once the cavitation consequence is taken into account, the lubricant film pressure decreases. Furthermore, at what time the bearing rotates at greater eccentricity ratios and rotational speeds, more deformation material of the bearing is seen. The current research may help in predicting the bearing performance parameters in real-world situations.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostyka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29354/diag/166102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates a three-dimensional CFD analysis of hydrodynamic journal bearing performance for two different available types of lubricants, SEA 10W50 and SEA 15W40, considering thermal, elastic deformation, and cavitation effects. A 3-dimensional CFD model founded on continuity, momentum, energy, in addition elasticity equations has been implemented. The analysis is performed for a bearing with different journal speeds (1000-3000rpm) and eccentricity ratios (0.1-0.9). The cavitation effect was considered using the model of Zwart–Gerber–Balamri multiphase flow model. The bearing material elastic deformation was considered by implementing the two-way FSI technique through ANSYS-FLUENT 2019 R2. A comparative study of the oil film temperature, thermal pressure, also the load capacity by the bearing has been performed. By comparing the current work's oil film temperature results with those obtained by Ferron et al (1983), with a maximum deviation between the results not exceeding 3 percent, the mathematical model was validated. The findings demonstrate that, once the cavitation consequence is taken into account, the lubricant film pressure decreases. Furthermore, at what time the bearing rotates at greater eccentricity ratios and rotational speeds, more deformation material of the bearing is seen. The current research may help in predicting the bearing performance parameters in real-world situations.
考虑热效应和空化效应的不同油级滑动轴承的CFD-FSI弹流动力学分析
本文研究了两种不同类型的润滑剂(SEA 10W50和SEA 15W40)的流体动力轴颈轴承性能的三维CFD分析,考虑了热变形、弹性变形和空化效应。建立了基于连续性、动量、能量以及弹性方程的三维CFD模型。对不同轴颈转速(1000-3000rpm)和偏心率(0.1-0.9)的轴承进行了分析。使用Zwart–Gerber–Balamri多相流模型考虑了空化效应。通过ANSYS-FLUENT 2019 R2实现双向FSI技术,考虑了轴承材料的弹性变形。对油膜温度、热压力以及轴承的承载能力进行了比较研究。通过将当前工作的油膜温度结果与Ferron等人(1983)获得的结果进行比较,结果之间的最大偏差不超过3%,验证了数学模型。研究结果表明,一旦考虑到空化后果,润滑油膜压力就会降低。此外,在轴承以更大的偏心率和转速旋转的时间,可以看到轴承的更多变形材料。目前的研究可能有助于预测现实世界中的轴承性能参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Diagnostyka
Diagnostyka Engineering-Mechanical Engineering
CiteScore
2.20
自引率
0.00%
发文量
41
期刊介绍: Diagnostyka – is a quarterly published by the Polish Society of Technical Diagnostics (PSTD). The journal “Diagnostyka” was established by the decision of the Presidium of Main Board of the Polish Society of Technical Diagnostics on August, 21st 2000 and replaced published since 1990 reference book of the PSTD named “Diagnosta”. In the years 2000-2003 there were issued annually two numbers of the journal, since 2004 “Diagnostyka” is issued as a quarterly. Research areas covered include: -theory of the technical diagnostics, -experimental diagnostic research of processes, objects and systems, -analytical, symptom and simulation models of technical objects, -algorithms, methods and devices for diagnosing, prognosis and genesis of condition of technical objects, -methods for detection, localization and identification of damages of technical objects, -artificial intelligence in diagnostics, neural nets, fuzzy systems, genetic algorithms, expert systems, -application of technical diagnostics, -diagnostic issues in mechanical and civil engineering, -medical and biological diagnostics with signal processing application, -structural health monitoring, -machines, -noise and vibration, -analysis of technical and civil systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信