Lithospheric S-velocity structure of the on-shore Potiguar Basin, NE Brazil: High heat-flow in an aborted rift

IF 2.1 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Thabita Barbosa , Jordi Julià , Aderson F. Do Nascimento
{"title":"Lithospheric S-velocity structure of the on-shore Potiguar Basin, NE Brazil: High heat-flow in an aborted rift","authors":"Thabita Barbosa ,&nbsp;Jordi Julià ,&nbsp;Aderson F. Do Nascimento","doi":"10.1016/j.jog.2022.101952","DOIUrl":null,"url":null,"abstract":"<div><p>The lithospheric structure of the on-shore Potiguar Basin has been investigated through velocity-depth profiles developed from the joint inversion of receiver functions and surface-wave dispersion at 16 seismic stations in and around the basin. The Potiguar Basin is an aborted rift basin that formed during the opening of the South Atlantic Ocean in the Lower Cretaceous, and is characterized by an unusual surface heat-flow with values as high as 101 mW/m<sup>2</sup>. Our results reveal: (i) A relatively thin crust of ∼30 km below the on-shore Potiguar Basin and a relatively thicker crust of ∼32 km around the basin; (ii) the existence of an anomalous uppermost mantle of ∼4.3 km/s at 30–40 km depth under most seismic stations; and (iii) the presence of a negative velocity gradient centered at ∼125 km depth, which probably represents a shallow Lithosphere Asthenosphere Boundary (LAB). We argue that the anomalous uppermost mantle is associated with magmatic intrusions just below the Moho, deeper than previously postulated from independent heat-flow studies, and that those intrusions result from heating by an active, hot sublithospheric mantle under the basin that keeps the lithosphere thin. We further argue that heating from the magmatic intrusions, along with direct heating from the sublithospheric mantle, may explain the unusually elevated heat flow observed at the surface.</p></div>","PeriodicalId":54823,"journal":{"name":"Journal of Geodynamics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodynamics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264370722000564","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The lithospheric structure of the on-shore Potiguar Basin has been investigated through velocity-depth profiles developed from the joint inversion of receiver functions and surface-wave dispersion at 16 seismic stations in and around the basin. The Potiguar Basin is an aborted rift basin that formed during the opening of the South Atlantic Ocean in the Lower Cretaceous, and is characterized by an unusual surface heat-flow with values as high as 101 mW/m2. Our results reveal: (i) A relatively thin crust of ∼30 km below the on-shore Potiguar Basin and a relatively thicker crust of ∼32 km around the basin; (ii) the existence of an anomalous uppermost mantle of ∼4.3 km/s at 30–40 km depth under most seismic stations; and (iii) the presence of a negative velocity gradient centered at ∼125 km depth, which probably represents a shallow Lithosphere Asthenosphere Boundary (LAB). We argue that the anomalous uppermost mantle is associated with magmatic intrusions just below the Moho, deeper than previously postulated from independent heat-flow studies, and that those intrusions result from heating by an active, hot sublithospheric mantle under the basin that keeps the lithosphere thin. We further argue that heating from the magmatic intrusions, along with direct heating from the sublithospheric mantle, may explain the unusually elevated heat flow observed at the surface.

巴西东北部Potiguar盆地陆上岩石圈S速度结构:中止裂谷中的高热流
通过联合反演盆地内和周围16个地震站的接收函数和表面波频散得到的速度-深度剖面,研究了Potiguar盆地的岩石圈结构。Potiguar盆地是一个流产的裂谷盆地,形成于下白垩纪南大西洋开放期间,其特征是异常的地表热流,其值高达101 mW/m2。我们的研究结果表明:(i)波蒂古尔盆地海岸以下约30km的相对较薄的地壳和盆地周围约32km的相对较厚的地壳;(ii)在大多数地震台下,在30–40 km深度处,存在约4.3 km/s的异常最上层地幔;和(iii)以~125km深度为中心的负速度梯度的存在,这可能代表浅岩石圈-岩石圈边界(LAB)。我们认为,异常的最上层地幔与莫霍面以下的岩浆侵入体有关,比之前独立热流研究假设的要深,这些侵入体是由盆地下活跃的热亚岩石圈地幔加热引起的,该地幔使岩石圈保持较薄。我们进一步认为,岩浆侵入体的加热,以及亚岩石圈地幔的直接加热,可能解释了在地表观察到的异常升高的热流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geodynamics
Journal of Geodynamics 地学-地球化学与地球物理
CiteScore
4.60
自引率
0.00%
发文量
21
审稿时长
6-12 weeks
期刊介绍: The Journal of Geodynamics is an international and interdisciplinary forum for the publication of results and discussions of solid earth research in geodetic, geophysical, geological and geochemical geodynamics, with special emphasis on the large scale processes involved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信