Fast Concurrent Data Sketches

Pub Date : 2022-04-11 DOI:10.1145/3512758
Arik Rinberg, A. Spiegelman, Edward Bortnikov, Eshcar Hillel, I. Keidar, Lee Rhodes, Hadar Serviansky
{"title":"Fast Concurrent Data Sketches","authors":"Arik Rinberg, A. Spiegelman, Edward Bortnikov, Eshcar Hillel, I. Keidar, Lee Rhodes, Hadar Serviansky","doi":"10.1145/3512758","DOIUrl":null,"url":null,"abstract":"Data sketches are approximate succinct summaries of long data streams. They are widely used for processing massive amounts of data and answering statistical queries about it. Existing libraries producing sketches are very fast, but do not allow parallelism for creating sketches using multiple threads or querying them while they are being built. We present a generic approach to parallelising data sketches efficiently and allowing them to be queried in real time, while bounding the error that such parallelism introduces. Utilising relaxed semantics and the notion of strong linearisability, we prove our algorithm’s correctness and analyse the error it induces in some specific sketches. Our implementation achieves high scalability while keeping the error small. We have contributed one of our concurrent sketches to the open-source data sketches library.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Data sketches are approximate succinct summaries of long data streams. They are widely used for processing massive amounts of data and answering statistical queries about it. Existing libraries producing sketches are very fast, but do not allow parallelism for creating sketches using multiple threads or querying them while they are being built. We present a generic approach to parallelising data sketches efficiently and allowing them to be queried in real time, while bounding the error that such parallelism introduces. Utilising relaxed semantics and the notion of strong linearisability, we prove our algorithm’s correctness and analyse the error it induces in some specific sketches. Our implementation achieves high scalability while keeping the error small. We have contributed one of our concurrent sketches to the open-source data sketches library.
分享
查看原文
快速并发数据草图
数据草图是长数据流的近似简洁摘要。它们被广泛用于处理大量数据并回答有关数据的统计查询。生成草图的现有库非常快,但不允许使用多线程创建草图或在构建草图时查询草图的并行性。我们提出了一种通用的方法来有效地并行化数据草图,并允许实时查询它们,同时限制这种并行性引入的错误。利用松弛语义和强线性性的概念,证明了算法的正确性,并分析了算法在一些具体图中引起的误差。我们的实现在保持小错误的同时实现了高可伸缩性。我们已经向开源数据草图库贡献了一个并发草图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信