Bridging the “gApp”: improving neural machine translation systems for multiword expression detection

Pub Date : 2020-11-25 DOI:10.1515/phras-2020-0005
Carlos Manuel Hidalgo-Ternero, G. C. Pastor
{"title":"Bridging the “gApp”: improving neural machine translation systems for multiword expression detection","authors":"Carlos Manuel Hidalgo-Ternero, G. C. Pastor","doi":"10.1515/phras-2020-0005","DOIUrl":null,"url":null,"abstract":"Abstract The present research introduces the tool gApp, a Python-based text preprocessing system for the automatic identification and conversion of discontinuous multiword expressions (MWEs) into their continuous form in order to enhance neural machine translation (NMT). To this end, an experiment with semi-fixed verb–noun idiomatic combinations (VNICs) will be carried out in order to evaluate to what extent gApp can optimise the performance of the two main free open-source NMT systems —Google Translate and DeepL— under the challenge of MWE discontinuity in the Spanish into English directionality. In the light of our promising results, the study concludes with suggestions on how to further optimise MWE-aware NMT systems.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/phras-2020-0005","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/phras-2020-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract The present research introduces the tool gApp, a Python-based text preprocessing system for the automatic identification and conversion of discontinuous multiword expressions (MWEs) into their continuous form in order to enhance neural machine translation (NMT). To this end, an experiment with semi-fixed verb–noun idiomatic combinations (VNICs) will be carried out in order to evaluate to what extent gApp can optimise the performance of the two main free open-source NMT systems —Google Translate and DeepL— under the challenge of MWE discontinuity in the Spanish into English directionality. In the light of our promising results, the study concludes with suggestions on how to further optimise MWE-aware NMT systems.
分享
查看原文
桥接“gApp”:改进用于多词表达检测的神经机器翻译系统
摘要本文介绍了gApp工具,这是一个基于Python的文本预处理系统,用于自动识别不连续的多词表达式并将其转换为连续形式,以增强神经机器翻译(NMT)。为此,将进行一项半固定动词-名词惯用组合(VNIC)实验,以评估gApp在多大程度上可以优化两个主要的免费开源NMT系统——谷歌翻译和DeepL——在西班牙语到英语的MWE不连续性的挑战下的性能。鉴于我们有希望的结果,该研究最后提出了如何进一步优化MWE感知NMT系统的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信