On some singular mean-field games

IF 1.1 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Marco Cirant, D. Gomes, Edgard A. Pimentel, H. Sánchez-Morgado
{"title":"On some singular mean-field games","authors":"Marco Cirant, D. Gomes, Edgard A. Pimentel, H. Sánchez-Morgado","doi":"10.3934/JDG.2021006","DOIUrl":null,"url":null,"abstract":"Here, we prove the existence of smooth solutions for mean-field games with a singular mean-field coupling; that is, a coupling in the Hamilton-Jacobi equation of the form \\begin{document}$ g(m) = -m^{- \\alpha} $\\end{document} with \\begin{document}$ \\alpha>0 $\\end{document} . We consider stationary and time-dependent settings. The function \\begin{document}$ g $\\end{document} is monotone, but it is not bounded from below. With the exception of the logarithmic coupling, this is the first time that MFGs whose coupling is not bounded from below is examined in the literature. This coupling arises in models where agents have a strong preference for low-density regions. Paradoxically, this causes the agents move towards low-density regions and, thus, prevents the creation of those regions. To prove the existence of solutions, we consider an approximate problem for which the existence of smooth solutions is known. Then, we prove new a priori bounds for the solutions that show that \\begin{document}$ \\frac 1 m $\\end{document} is bounded. Finally, using a limiting argument, we obtain the existence of solutions. The proof in the stationary case relies on a blow-up argument and in the time-dependent case on new bounds for \\begin{document}$ m^{-1} $\\end{document} .","PeriodicalId":42722,"journal":{"name":"Journal of Dynamics and Games","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamics and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/JDG.2021006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

Here, we prove the existence of smooth solutions for mean-field games with a singular mean-field coupling; that is, a coupling in the Hamilton-Jacobi equation of the form \begin{document}$ g(m) = -m^{- \alpha} $\end{document} with \begin{document}$ \alpha>0 $\end{document} . We consider stationary and time-dependent settings. The function \begin{document}$ g $\end{document} is monotone, but it is not bounded from below. With the exception of the logarithmic coupling, this is the first time that MFGs whose coupling is not bounded from below is examined in the literature. This coupling arises in models where agents have a strong preference for low-density regions. Paradoxically, this causes the agents move towards low-density regions and, thus, prevents the creation of those regions. To prove the existence of solutions, we consider an approximate problem for which the existence of smooth solutions is known. Then, we prove new a priori bounds for the solutions that show that \begin{document}$ \frac 1 m $\end{document} is bounded. Finally, using a limiting argument, we obtain the existence of solutions. The proof in the stationary case relies on a blow-up argument and in the time-dependent case on new bounds for \begin{document}$ m^{-1} $\end{document} .
关于一些奇异平均场对策
在这里,我们证明了具有奇异平均场耦合的平均场对策的光滑解的存在性;也就是说,形式为\begin{document}$g(m)=-m^{-\alpha}$\end{document}的Hamilton-Jacobi方程中的一个耦合,其中\begin{document}$\alpha>0$\end{document}。我们考虑静止和时间相关的设置。函数\ begin{document}$g$\ end{documents}是单调的,但它不是从下到下有界的。除了对数耦合,这是文献中首次对耦合不受下界限制的MFG进行研究。这种耦合出现在代理对低密度区域有强烈偏好的模型中。矛盾的是,这导致制剂向低密度区域移动,从而阻止了这些区域的形成。为了证明解的存在性,我们考虑一个已知光滑解存在的近似问题。然后,我们证明了这些解的新的先验界,这些先验界表明\ begin{document}$\ frac 1 m$\ end{document}是有界的。最后,利用一个极限论证,我们得到了解的存在性。在平稳情况下的证明依赖于一个爆破参数,在与时间相关的情况下依赖于\ begin{document}$m^{-1}$\ end{document}的新边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Dynamics and Games
Journal of Dynamics and Games MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.00
自引率
0.00%
发文量
26
期刊介绍: The Journal of Dynamics and Games (JDG) is a pure and applied mathematical journal that publishes high quality peer-review and expository papers in all research areas of expertise of its editors. The main focus of JDG is in the interface of Dynamical Systems and Game Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信