{"title":"Time-Fractional Cattaneo-Type Thermoelastic Interior-Boundary Value Problem Within A Rigid Ball","authors":"G. Dhameja, L. Khalsa, V Varghese","doi":"10.5541/ijot.1170335","DOIUrl":null,"url":null,"abstract":"The paper discusses the solution of an interior-boundary value problem of one-dimensional time-fractional Cattaneo-type heat conduction and its stress fields for a rigid ball. The interior value problem describes the dependence of the boundary conditions within the ball's inner plane at any instant with a prescribed temperature state, in contrast to the exterior value problem, which relates the known surface temperature to boundary conditions. A single-phase-lag equation with Caputo fractional derivatives is proposed to model the heat equation in a medium subjected to time-dependent physical boundary conditions. The application of the finite spherical Hankel and Laplace transform technique to heat conduction is discussed. The influence of the fractional-order parameter and the relaxation time is examined on the temperature fields and their related stresses. The findings show that the slower the thermal wave, the bigger the fractional-order setting, and the higher the period of relaxation, the slower the heat flux propagates.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5541/ijot.1170335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The paper discusses the solution of an interior-boundary value problem of one-dimensional time-fractional Cattaneo-type heat conduction and its stress fields for a rigid ball. The interior value problem describes the dependence of the boundary conditions within the ball's inner plane at any instant with a prescribed temperature state, in contrast to the exterior value problem, which relates the known surface temperature to boundary conditions. A single-phase-lag equation with Caputo fractional derivatives is proposed to model the heat equation in a medium subjected to time-dependent physical boundary conditions. The application of the finite spherical Hankel and Laplace transform technique to heat conduction is discussed. The influence of the fractional-order parameter and the relaxation time is examined on the temperature fields and their related stresses. The findings show that the slower the thermal wave, the bigger the fractional-order setting, and the higher the period of relaxation, the slower the heat flux propagates.