Advances in Physical Technologies to Improve Virgin Olive Oil Extraction Efficiency in High-Throughput Production Plants

IF 5.3 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Pablo Juliano, Mohamed A. Fouad M. Gaber, Roberto Romaniello, Antonia Tamborrino, Antonio Berardi, Alessandro Leone
{"title":"Advances in Physical Technologies to Improve Virgin Olive Oil Extraction Efficiency in High-Throughput Production Plants","authors":"Pablo Juliano,&nbsp;Mohamed A. Fouad M. Gaber,&nbsp;Roberto Romaniello,&nbsp;Antonia Tamborrino,&nbsp;Antonio Berardi,&nbsp;Alessandro Leone","doi":"10.1007/s12393-023-09347-1","DOIUrl":null,"url":null,"abstract":"<div><p>The olive oil industry has been operating for centuries, but in the last decades, significant attention has gone to the development of physical technologies that enhance the traditional extra virgin olive oil (EVOO) extraction process efficiency. Studies have validated such technologies at industrial scale in medium-sized olive oil factories. These physical technological interventions are aimed to achieve at least one of the following outcomes: (a) higher EVOO throughput by implementing a continuous uniform-heating process alternative to semi-batch malaxation, (b) increase the recovery of EVOO, and (c) enhance the phenolic content in olive oil. The present work identifies the status of what is presently achievable with these physical interventions. A systematic comparison across recent studies was conducted in factories processing beyond 1 T h<sup>−1</sup> olive paste. Technologies used in these studies include heat exchangers, microwaves (MW), ultrasound (US), megasonics (MS), and pulsed electric fields (PEF) individually or in combination.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":565,"journal":{"name":"Food Engineering Reviews","volume":"15 4","pages":"625 - 642"},"PeriodicalIF":5.3000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12393-023-09347-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Engineering Reviews","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12393-023-09347-1","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The olive oil industry has been operating for centuries, but in the last decades, significant attention has gone to the development of physical technologies that enhance the traditional extra virgin olive oil (EVOO) extraction process efficiency. Studies have validated such technologies at industrial scale in medium-sized olive oil factories. These physical technological interventions are aimed to achieve at least one of the following outcomes: (a) higher EVOO throughput by implementing a continuous uniform-heating process alternative to semi-batch malaxation, (b) increase the recovery of EVOO, and (c) enhance the phenolic content in olive oil. The present work identifies the status of what is presently achievable with these physical interventions. A systematic comparison across recent studies was conducted in factories processing beyond 1 T h−1 olive paste. Technologies used in these studies include heat exchangers, microwaves (MW), ultrasound (US), megasonics (MS), and pulsed electric fields (PEF) individually or in combination.

Graphical Abstract

Abstract Image

提高高产植物初榨橄榄油提取效率的物理技术进展
橄榄油行业已经经营了几个世纪,但在过去的几十年里,人们开始关注物理技术的发展,以提高传统特级初榨橄榄油(EVOO)的提取工艺效率。研究已经在中型橄榄油工厂中验证了这些技术的工业规模。这些物理技术干预旨在实现以下至少一项结果:(a)通过实施连续均匀加热过程替代半批软化来提高EVOO的产量,(b)增加EVOO的回收率,以及(c)提高橄榄油中的酚含量。目前的工作确定了目前通过这些物理干预可以实现的状态。对最近的研究进行了系统的比较,这些研究是在处理超过1 T h−1橄榄酱的工厂进行的。这些研究中使用的技术包括热交换器、微波(MW)、超声波(US)、微电子学(MS)和脉冲电场(PEF)单独或组合使用。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Engineering Reviews
Food Engineering Reviews FOOD SCIENCE & TECHNOLOGY-
CiteScore
14.20
自引率
1.50%
发文量
27
审稿时长
>12 weeks
期刊介绍: Food Engineering Reviews publishes articles encompassing all engineering aspects of today’s scientific food research. The journal focuses on both classic and modern food engineering topics, exploring essential factors such as the health, nutritional, and environmental aspects of food processing. Trends that will drive the discipline over time, from the lab to industrial implementation, are identified and discussed. The scope of topics addressed is broad, including transport phenomena in food processing; food process engineering; physical properties of foods; food nano-science and nano-engineering; food equipment design; food plant design; modeling food processes; microbial inactivation kinetics; preservation technologies; engineering aspects of food packaging; shelf-life, storage and distribution of foods; instrumentation, control and automation in food processing; food engineering, health and nutrition; energy and economic considerations in food engineering; sustainability; and food engineering education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信