B. Eltzner, Pernille Hansen, S. Huckemann, S. Sommer
{"title":"Diffusion means in geometric spaces","authors":"B. Eltzner, Pernille Hansen, S. Huckemann, S. Sommer","doi":"10.3150/22-bej1578","DOIUrl":null,"url":null,"abstract":"We introduce a location statistic for distributions on non-linear geometric spaces, the diffusion mean, serving as an extension and an alternative to the Fr\\'echet mean. The diffusion mean arises as the generalization of Gaussian maximum likelihood analysis to non-linear spaces by maximizing the likelihood of a Brownian motion. The diffusion mean depends on a time parameter $t$, which admits the interpretation of the allowed variance of the diffusion. The diffusion $t$-mean of a distribution $X$ is the most likely origin of a Brownian motion at time $t$, given the end-point distribution $X$. We give a detailed description of the asymptotic behavior of the diffusion estimator and provide sufficient conditions for the diffusion estimator to be strongly consistent. Particularly, we present a smeary central limit theorem for diffusion means and we show that joint estimation of the mean and diffusion variance rules out smeariness in all directions simultaneously in general situations. Furthermore, we investigate properties of the diffusion mean for distributions on the sphere $\\mathbb S^n$. Experimentally, we consider simulated data and data from magnetic pole reversals, all indicating similar or improved convergence rate compared to the Fr\\'echet mean. Here, we additionally estimate $t$ and consider its effects on smeariness and uniqueness of the diffusion mean for distributions on the sphere.","PeriodicalId":55387,"journal":{"name":"Bernoulli","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bernoulli","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3150/22-bej1578","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 10
Abstract
We introduce a location statistic for distributions on non-linear geometric spaces, the diffusion mean, serving as an extension and an alternative to the Fr\'echet mean. The diffusion mean arises as the generalization of Gaussian maximum likelihood analysis to non-linear spaces by maximizing the likelihood of a Brownian motion. The diffusion mean depends on a time parameter $t$, which admits the interpretation of the allowed variance of the diffusion. The diffusion $t$-mean of a distribution $X$ is the most likely origin of a Brownian motion at time $t$, given the end-point distribution $X$. We give a detailed description of the asymptotic behavior of the diffusion estimator and provide sufficient conditions for the diffusion estimator to be strongly consistent. Particularly, we present a smeary central limit theorem for diffusion means and we show that joint estimation of the mean and diffusion variance rules out smeariness in all directions simultaneously in general situations. Furthermore, we investigate properties of the diffusion mean for distributions on the sphere $\mathbb S^n$. Experimentally, we consider simulated data and data from magnetic pole reversals, all indicating similar or improved convergence rate compared to the Fr\'echet mean. Here, we additionally estimate $t$ and consider its effects on smeariness and uniqueness of the diffusion mean for distributions on the sphere.
期刊介绍:
BERNOULLI is the journal of the Bernoulli Society for Mathematical Statistics and Probability, issued four times per year. The journal provides a comprehensive account of important developments in the fields of statistics and probability, offering an international forum for both theoretical and applied work.
BERNOULLI will publish:
Papers containing original and significant research contributions: with background, mathematical derivation and discussion of the results in suitable detail and, where appropriate, with discussion of interesting applications in relation to the methodology proposed.
Papers of the following two types will also be considered for publication, provided they are judged to enhance the dissemination of research:
Review papers which provide an integrated critical survey of some area of probability and statistics and discuss important recent developments.
Scholarly written papers on some historical significant aspect of statistics and probability.