{"title":"Estimating lane utilization for variable approach lanes using explainable machine learning","authors":"Adjé Jérémie Alagbé, Sheng Jin, Qianhan Bao, Wentong Guo","doi":"10.1080/21680566.2023.2250562","DOIUrl":null,"url":null,"abstract":"This study investigates the flow distribution patterns at intersection approaches with variable approach lanes (VALs) and proposes a new lane utilization adjustment factor specifically for VALs. Unmanned aerial vehicles (UAVs) were used to collect naturalistic data, including traffic flow, approach geometry, and signal control-specific information, at selected intersections in Hangzhou, China. Machine learning techniques were employed to develop accurate regression models for estimating lane utilization, separately for the two VAL statuses. Preliminary analyses indicate different VAL utilization patterns across sites, suggesting the presence of external factors, beyond the VAL control itself, influencing the VAL utilization. The machine learning regression models provide insights into these factors by ranking them based on the importance and the impact magnitude. From a practical standpoint, this study recommends the implementation of uniform lane guiding signs, lane geometry improvements, and driver education to enhance the operational efficiency of variable approach lanes.","PeriodicalId":48872,"journal":{"name":"Transportmetrica B-Transport Dynamics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportmetrica B-Transport Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21680566.2023.2250562","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the flow distribution patterns at intersection approaches with variable approach lanes (VALs) and proposes a new lane utilization adjustment factor specifically for VALs. Unmanned aerial vehicles (UAVs) were used to collect naturalistic data, including traffic flow, approach geometry, and signal control-specific information, at selected intersections in Hangzhou, China. Machine learning techniques were employed to develop accurate regression models for estimating lane utilization, separately for the two VAL statuses. Preliminary analyses indicate different VAL utilization patterns across sites, suggesting the presence of external factors, beyond the VAL control itself, influencing the VAL utilization. The machine learning regression models provide insights into these factors by ranking them based on the importance and the impact magnitude. From a practical standpoint, this study recommends the implementation of uniform lane guiding signs, lane geometry improvements, and driver education to enhance the operational efficiency of variable approach lanes.
期刊介绍:
Transportmetrica B is an international journal that aims to bring together contributions of advanced research in understanding and practical experience in handling the dynamic aspects of transport systems and behavior, and hence the sub-title is set as “Transport Dynamics”.
Transport dynamics can be considered from various scales and scopes ranging from dynamics in traffic flow, travel behavior (e.g. learning process), logistics, transport policy, to traffic control. Thus, the journal welcomes research papers that address transport dynamics from a broad perspective, ranging from theoretical studies to empirical analysis of transport systems or behavior based on actual data.
The scope of Transportmetrica B includes, but is not limited to, the following: dynamic traffic assignment, dynamic transit assignment, dynamic activity-based modeling, applications of system dynamics in transport planning, logistics planning and optimization, traffic flow analysis, dynamic programming in transport modeling and optimization, traffic control, land-use and transport dynamics, day-to-day learning process (model and behavioral studies), time-series analysis of transport data and demand, traffic emission modeling, time-dependent transport policy analysis, transportation network reliability and vulnerability, simulation of traffic system and travel behavior, longitudinal analysis of traveler behavior, etc.