F. T. Koay, Choo Jun Tan (Corresponding Author), S. Teh, P. C. Teoh, H. Low
{"title":"SUPPORTING DECISION MAKING WITH AN ARIZ-BASED MODEL FOR SMART MANUFACTURING","authors":"F. T. Koay, Choo Jun Tan (Corresponding Author), S. Teh, P. C. Teoh, H. Low","doi":"10.22452/mjcs.vol36no1.4","DOIUrl":null,"url":null,"abstract":"Smart manufacturing has transformed the way decisions are made. By accelerating the delivery of data to the various decision points, more rapid decision-making processes can be realized. A generic Decision Support System (DSS) utilizes an efficient technique, which integrates the algorithm for inventive problem solving (ARIZ) and supervised machine learning into a model for supporting various automated decision making processes. The proposed model is to examine the theoretical framework of ARIZ by devising an ARIZ-based DSS model. It incorporates supervised ML algorithms to assist decision making processes. Three case studies from the manufacturing sector are evaluated. The results indicate the capability of the proposed DSS in achieving a high accuracy rate and, at the same time reducing the time and resources required for decision making. Our study has simplified the data processing and extraction processes through an automated ARIZ-based DSS model; therefore enabling a non-technical user the opportunity to harvest the vast knowledge from the collected data for efficient decision making.","PeriodicalId":49894,"journal":{"name":"Malaysian Journal of Computer Science","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.22452/mjcs.vol36no1.4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Smart manufacturing has transformed the way decisions are made. By accelerating the delivery of data to the various decision points, more rapid decision-making processes can be realized. A generic Decision Support System (DSS) utilizes an efficient technique, which integrates the algorithm for inventive problem solving (ARIZ) and supervised machine learning into a model for supporting various automated decision making processes. The proposed model is to examine the theoretical framework of ARIZ by devising an ARIZ-based DSS model. It incorporates supervised ML algorithms to assist decision making processes. Three case studies from the manufacturing sector are evaluated. The results indicate the capability of the proposed DSS in achieving a high accuracy rate and, at the same time reducing the time and resources required for decision making. Our study has simplified the data processing and extraction processes through an automated ARIZ-based DSS model; therefore enabling a non-technical user the opportunity to harvest the vast knowledge from the collected data for efficient decision making.
期刊介绍:
The Malaysian Journal of Computer Science (ISSN 0127-9084) is published four times a year in January, April, July and October by the Faculty of Computer Science and Information Technology, University of Malaya, since 1985. Over the years, the journal has gained popularity and the number of paper submissions has increased steadily. The rigorous reviews from the referees have helped in ensuring that the high standard of the journal is maintained. The objectives are to promote exchange of information and knowledge in research work, new inventions/developments of Computer Science and on the use of Information Technology towards the structuring of an information-rich society and to assist the academic staff from local and foreign universities, business and industrial sectors, government departments and academic institutions on publishing research results and studies in Computer Science and Information Technology through a scholarly publication. The journal is being indexed and abstracted by Clarivate Analytics'' Web of Science and Elsevier''s Scopus