A Dataset of 108 Novel Noun-Noun Compound Words with Active and Passive Interpretation

Phoebe Chen, D. Poeppel, Arianna Zuanazzi
{"title":"A Dataset of 108 Novel Noun-Noun Compound Words with Active and Passive Interpretation","authors":"Phoebe Chen, D. Poeppel, Arianna Zuanazzi","doi":"10.5334/jopd.93","DOIUrl":null,"url":null,"abstract":"We created a dataset of 205 English novel noun-noun compounds (NNCs, e.g., “doctor charity”) by combining nouns with higher and lower agentivity (i.e., the probability of being an agent in a sentence). We collected active and passive interpretations of NNCs from a group of 58 English native speakers. We then measured interpretation time differences between NNCs with active and passive interpretations (i.e., 108 NNCs), using data obtained from a group of 68 English native speakers. Data were collected online using crowdsourcing platforms (SONA and Prolific). The datasets are available at osf.io/gvc2w/ and can be used to address questions about semantic and syntactic composition.","PeriodicalId":91028,"journal":{"name":"Journal of open psychology data","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of open psychology data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/jopd.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We created a dataset of 205 English novel noun-noun compounds (NNCs, e.g., “doctor charity”) by combining nouns with higher and lower agentivity (i.e., the probability of being an agent in a sentence). We collected active and passive interpretations of NNCs from a group of 58 English native speakers. We then measured interpretation time differences between NNCs with active and passive interpretations (i.e., 108 NNCs), using data obtained from a group of 68 English native speakers. Data were collected online using crowdsourcing platforms (SONA and Prolific). The datasets are available at osf.io/gvc2w/ and can be used to address questions about semantic and syntactic composition.
108个新颖名词-名词复合词的主被动解释数据集
我们通过组合具有较高和较低代理性(即在句子中成为代理的概率)的名词,创建了一个由205个英语新名词-名词复合物(NNCs,例如“doctor charity”)组成的数据集。我们收集了58名以英语为母语的人对NNC的主动和被动解释。然后,我们使用从68名英语母语者中获得的数据,测量了具有主动和被动解释的NNC(即108个NNC)之间的解释时间差异。数据是使用众包平台(SONA和Prolific)在线收集的。这些数据集可在osf.io/gvc2w/上获得,可用于解决有关语义和句法组成的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信