Physiowise: A Physics-aware Approach to Dicrotic Notch Identification.

ACM transactions on computing for healthcare Pub Date : 2023-04-01 Epub Date: 2023-04-18 DOI:10.1145/3578556
Mahya Saffarpour, Debraj Basu, Fatemeh Radaei, Kourosh Vali, Jason Y Adams, Chen-Nee Chuah, Soheil Ghiasi
{"title":"Physiowise: A Physics-aware Approach to Dicrotic Notch Identification.","authors":"Mahya Saffarpour, Debraj Basu, Fatemeh Radaei, Kourosh Vali, Jason Y Adams, Chen-Nee Chuah, Soheil Ghiasi","doi":"10.1145/3578556","DOIUrl":null,"url":null,"abstract":"<p><p>Dicrotic Notch (DN), one of the most significant and indicative features of the arterial blood pressure (ABP) waveform, becomes less pronounced and thus harder to identify as a matter of aging and pathological vascular stiffness. Generalizable and automatic DN identification for such edge cases is even more challenging in the presence of unexpected ABP waveform deformations that happen due to internal and external noise sources or pathological conditions that cause hemodynamic instability. We propose a physics-aware approach, named Physiowise (PW), that first employs a cardiovascular model to augment the original ABP waveform and reduce unexpected deformations, then apply a set of predefined rules on the augmented signal to find DN locations. We have tested the proposed method on in-vivo data gathered from 14 pigs under hemorrhage and sepsis study. Our result indicates 52% overall mean error improvement with 16% higher detection accuracy within the lowest permitted error range of 30<i>ms</i>. An additional hybrid methodology is also proposed to allow combining augmentation with any application-specific user-defined rule set.</p>","PeriodicalId":72043,"journal":{"name":"ACM transactions on computing for healthcare","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10861158/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM transactions on computing for healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3578556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dicrotic Notch (DN), one of the most significant and indicative features of the arterial blood pressure (ABP) waveform, becomes less pronounced and thus harder to identify as a matter of aging and pathological vascular stiffness. Generalizable and automatic DN identification for such edge cases is even more challenging in the presence of unexpected ABP waveform deformations that happen due to internal and external noise sources or pathological conditions that cause hemodynamic instability. We propose a physics-aware approach, named Physiowise (PW), that first employs a cardiovascular model to augment the original ABP waveform and reduce unexpected deformations, then apply a set of predefined rules on the augmented signal to find DN locations. We have tested the proposed method on in-vivo data gathered from 14 pigs under hemorrhage and sepsis study. Our result indicates 52% overall mean error improvement with 16% higher detection accuracy within the lowest permitted error range of 30ms. An additional hybrid methodology is also proposed to allow combining augmentation with any application-specific user-defined rule set.

Physiowise: Dicrotic缺口识别的物理感知方法
二搏性缺口(DN)是动脉血压(ABP)波形最显著和最具指示性的特征之一,变得不那么明显,因此更难将其确定为衰老和病理性血管硬化的问题。在由于内部和外部噪声源或导致血液动力学不稳定的病理条件而发生的意外ABP波形变形的情况下,这种边缘病例的通用和自动DN识别甚至更具挑战性。我们提出了一种物理感知方法,称为Physiowise(PW),该方法首先使用心血管模型来增强原始ABP波形并减少意外变形,然后对增强的信号应用一组预定义的规则来找到DN位置。我们已经在14头正在进行出血和败血症研究的猪的体内数据上测试了所提出的方法。我们的结果表明,在30ms的最低允许误差范围内,总体平均误差提高了52%,检测精度提高了16%。还提出了一种额外的混合方法,允许将增强与任何特定应用程序的用户定义规则集相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信