Compactification of Drinfeld moduli spaces as moduli spaces of 𝐴-reciprocal maps and consequences for Drinfeld modular forms

IF 0.9 1区 数学 Q2 MATHEMATICS
R. Pink
{"title":"Compactification of Drinfeld moduli spaces as moduli spaces of 𝐴-reciprocal maps and consequences for Drinfeld modular forms","authors":"R. Pink","doi":"10.1090/jag/772","DOIUrl":null,"url":null,"abstract":"<p>We construct a compactification of the moduli space of Drinfeld modules of rank <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r\">\n <mml:semantics>\n <mml:mi>r</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">r</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and level <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\">\n <mml:semantics>\n <mml:mi>N</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">N</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> as a moduli space of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-reciprocal maps. This is closely related to the Satake compactification but not exactly the same. The construction involves some technical assumptions on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\">\n <mml:semantics>\n <mml:mi>N</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">N</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> that are satisfied for a cofinal set of ideals <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\">\n <mml:semantics>\n <mml:mi>N</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">N</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In the special case where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A equals double-struck upper F Subscript q Baseline left-bracket t right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>A</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">F</mml:mi>\n </mml:mrow>\n <mml:mi>q</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">A=\\mathbb {F}_q[t]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N equals left-parenthesis t Superscript n Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>N</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>t</mml:mi>\n <mml:mi>n</mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">N=(t^n)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, we obtain a presentation for the graded ideal of Drinfeld cusp forms of level <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\">\n <mml:semantics>\n <mml:mi>N</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">N</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and all weights and can deduce a dimension formula for the space of cusp forms of any weight. We expect similar results in general, but the proof will require more ideas.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/772","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We construct a compactification of the moduli space of Drinfeld modules of rank r r and level N N as a moduli space of A A -reciprocal maps. This is closely related to the Satake compactification but not exactly the same. The construction involves some technical assumptions on N N that are satisfied for a cofinal set of ideals  N N . In the special case where A = F q [ t ] A=\mathbb {F}_q[t] and N = ( t n ) N=(t^n) , we obtain a presentation for the graded ideal of Drinfeld cusp forms of level N N and all weights and can deduce a dimension formula for the space of cusp forms of any weight. We expect similar results in general, but the proof will require more ideas.

Drinfeld模空间作为的模空间的紧致化𝐴-Drinfeld模形式的互易映射及其结果
我们构造了秩r r和阶N N的Drinfeld模的模空间的紧致化,作为a-倒数映射的模空间。这与Satake紧致化密切相关,但并不完全相同。该构造涉及对N N的一些技术假设,这些假设对于理想的共最终集N N是满足的。在A=F q[t]A=\mathbb的特殊情况下{F}_q[t] 以及N=(tn)N=(t^N),我们得到了N阶Drinfeld尖点形式的分次理想和所有权的一个表示,并可以推导出任何权的尖点形式空间的维数公式。我们预计总体上会有类似的结果,但需要更多的想法来证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信