{"title":"Tire-pavement friction modeling considering pavement texture and water film","authors":"","doi":"10.1016/j.ijtst.2023.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>The accurate estimation of tire-pavement friction, especially under wet conditions, is critical to ensure pavement safety. For this purpose, this paper develops a modified tire-pavement friction model which takes the effect of pavement texture and water film into consideration. The influence of pavement texture is quantified by a newly proposed parameter called texture influence coefficient, which is related to the real contact patch of tire-pavement. The water effect is calculated from two parts, namely lubrication effect and hydrodynamic effect. Based on these two steps, a modified average lumped LuGre (ALL) model is developed. The proposed model is calibrated and verified by GripTester data collected under different vehicle velocities and water film thicknesses. The root mean square error between the calculated value of the model and the measured value is 0.023. In addition, the effects of vehicle velocity, slip rate, water film thickness, and pavement type on the friction coefficient are analyzed by numerical calculation. The results show that the friction coefficient reaches the maximum when the slip rate is in the range of [0.15, 0.20]. The increases in the vehicle speed and water film thickness will lead to the decrease in the friction coefficient. Besides, in thin water film (<1 millimeter) conditions, the deterioration effect of water film thickness on the friction coefficient is more remarkable. The results prove that the modified tire-pavement friction model provides a precise and reliable way to estimate the friction coefficient of pavement, which can assist the pavement management systems in risk warning and safety guarantee.</p></div>","PeriodicalId":52282,"journal":{"name":"International Journal of Transportation Science and Technology","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S204604302300031X/pdfft?md5=7af3bbd8e7f3c373c7350a55fd211356&pid=1-s2.0-S204604302300031X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Transportation Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S204604302300031X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
The accurate estimation of tire-pavement friction, especially under wet conditions, is critical to ensure pavement safety. For this purpose, this paper develops a modified tire-pavement friction model which takes the effect of pavement texture and water film into consideration. The influence of pavement texture is quantified by a newly proposed parameter called texture influence coefficient, which is related to the real contact patch of tire-pavement. The water effect is calculated from two parts, namely lubrication effect and hydrodynamic effect. Based on these two steps, a modified average lumped LuGre (ALL) model is developed. The proposed model is calibrated and verified by GripTester data collected under different vehicle velocities and water film thicknesses. The root mean square error between the calculated value of the model and the measured value is 0.023. In addition, the effects of vehicle velocity, slip rate, water film thickness, and pavement type on the friction coefficient are analyzed by numerical calculation. The results show that the friction coefficient reaches the maximum when the slip rate is in the range of [0.15, 0.20]. The increases in the vehicle speed and water film thickness will lead to the decrease in the friction coefficient. Besides, in thin water film (<1 millimeter) conditions, the deterioration effect of water film thickness on the friction coefficient is more remarkable. The results prove that the modified tire-pavement friction model provides a precise and reliable way to estimate the friction coefficient of pavement, which can assist the pavement management systems in risk warning and safety guarantee.