{"title":"Optimization of Composite Cylindrical Shell Structures for Hydrostatic Pressure Loading","authors":"H. Matos, Birendra Chaudhary, A. Ngwa","doi":"10.1115/1.4055159","DOIUrl":null,"url":null,"abstract":"\n Deep-sea structures will collapse/implode under hydrostatic pressure when the structure dives below a threshold, leading to structural instability and catastrophic failure. To better understand how the layup angle of composite cylindrical shells influences this instability threshold, the present work explores how composite cylinders can achieve the highest (optimum) critical collapse pressure under hydrostatic loading conditions. To perform this analysis, a closed-form analytical cylinder buckling solution developed by previous work is used in conjunction with different cylindrical geometrical configurations and composite properties for glass, carbon, and intraply-hybrid composite properties for woven and unidirectional structures. The results show that a composite structure's optimum layup configuration is unique to the structure's geometry and material system. However, general trends are observed for these different systems, such as how symmetric and asymmetric constructions place the axial-resistant layers near the neutral plane of the composite system. In addition, both constructions need an increase in shear-resistance layers as the L/D ratio decreases regardless of the material system. Lastly, the analytical approach presented in this work can be used to accurately determine the optimum layup angle for composite cylindrical structures that are subjected to external hydrostatic pressure.","PeriodicalId":50080,"journal":{"name":"Journal of Pressure Vessel Technology-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pressure Vessel Technology-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4055159","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 4
Abstract
Deep-sea structures will collapse/implode under hydrostatic pressure when the structure dives below a threshold, leading to structural instability and catastrophic failure. To better understand how the layup angle of composite cylindrical shells influences this instability threshold, the present work explores how composite cylinders can achieve the highest (optimum) critical collapse pressure under hydrostatic loading conditions. To perform this analysis, a closed-form analytical cylinder buckling solution developed by previous work is used in conjunction with different cylindrical geometrical configurations and composite properties for glass, carbon, and intraply-hybrid composite properties for woven and unidirectional structures. The results show that a composite structure's optimum layup configuration is unique to the structure's geometry and material system. However, general trends are observed for these different systems, such as how symmetric and asymmetric constructions place the axial-resistant layers near the neutral plane of the composite system. In addition, both constructions need an increase in shear-resistance layers as the L/D ratio decreases regardless of the material system. Lastly, the analytical approach presented in this work can be used to accurately determine the optimum layup angle for composite cylindrical structures that are subjected to external hydrostatic pressure.
期刊介绍:
The Journal of Pressure Vessel Technology is the premier publication for the highest-quality research and interpretive reports on the design, analysis, materials, fabrication, construction, inspection, operation, and failure prevention of pressure vessels, piping, pipelines, power and heating boilers, heat exchangers, reaction vessels, pumps, valves, and other pressure and temperature-bearing components, as well as the nondestructive evaluation of critical components in mechanical engineering applications. Not only does the Journal cover all topics dealing with the design and analysis of pressure vessels, piping, and components, but it also contains discussions of their related codes and standards.
Applicable pressure technology areas of interest include: Dynamic and seismic analysis; Equipment qualification; Fabrication; Welding processes and integrity; Operation of vessels and piping; Fatigue and fracture prediction; Finite and boundary element methods; Fluid-structure interaction; High pressure engineering; Elevated temperature analysis and design; Inelastic analysis; Life extension; Lifeline earthquake engineering; PVP materials and their property databases; NDE; safety and reliability; Verification and qualification of software.