Prospective mathematics teachers’ argumentation structure when constructing a mathematical proof: The importance of backing

Christina M Laamena, T. Nusantara
{"title":"Prospective mathematics teachers’ argumentation structure when constructing a mathematical proof: The importance of backing","authors":"Christina M Laamena, T. Nusantara","doi":"10.20414/BETAJTM.V12I1.272","DOIUrl":null,"url":null,"abstract":"\n[English]: This qualitative study with phenomenology design aims to investigate the use of backing and its relation to rebuttal and qualifier in prospective mathematics teachers’ (PMTs) argumentation when constructing a mathematical proof about algebraic function. The data were collected through subjects' works on the proof, recorded think-aloud data, and in-depth interviews. Data analysis was guided by Toulmin’s argumentation scheme. The results show that the PMTs used three types of backing, i.e., backing in the form of definitions or theorems (reference backing), examples of numbers (numerical backing) and graphs of functions (graphical backing). The PMTs utilized the backings to strengthen deductive and inductive warrant. A numerical backing is used when a warrant cannot justify the truth of a claim. Graphical backing is used to convince oneself about the truth of the data that has been made while the reference backing is only clarification when students have understood or have knowledge of the statement given. Numerical and graphical backing relate directly to rebuttal and provide counter-examples and qualifier of the claim. A numerical backing makes students more confident about claims that are generated compared to reference backing. \nKeywords: Argumentation, Mathematical proof, Backing \n[Bahasa]: Penelitian kualitatif dengan desain fenomenologi ini bertujuan untuk menyelidiki penggunaan backing dan hubungannya dengan rebuttal dan qualifier dalam membangun bukti matematika terkait fungsi aljabar oleh calon guru matematika. Data dikumpulkan melalui hasil kerja siswa, rekaman think aloud, dan wawancara mendalam. Analisis data merujuk pada skema argumentasi Toulmin. Hasil penelitian menunjukkan bahwa backing yang digunakan siswa tidak hanya berbentuk teorema atau definisis (reference backing) tetapi juga contoh-contoh bilangan (numerical backing) dan grafik fungsi (graphical backing). Ketiga jenis backing tersebut untuk memperkuat warrant induktif maupun deduktif. Numerical backing digunakan ketika warrant tidak dapat menjustifikasi kebenaran klaim. Graphical backing digunakan untuk meyakinkan diri sendiri tentang kebenaran klaim yang telah dibuat sedangkan reference backing hanya bersifat klarifikasi karena siswa telah memahami pernyataan yang diberikan. Numerical backing dan graphical backing berhubungan langsung dengan rebuttal untuk memberikan contoh penyangkal dan jaminan kebenaran (qualifier) klaim. Numerical backing membuat siswa lebih percaya diri tentang klaim yang dihasilkan dibandingkan dengan reference backing. \nKata kunci: Argumentasi, Bukti matematis, Backing \n  \n","PeriodicalId":31758,"journal":{"name":"Beta Jurnal Tadris Matematika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beta Jurnal Tadris Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20414/BETAJTM.V12I1.272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

[English]: This qualitative study with phenomenology design aims to investigate the use of backing and its relation to rebuttal and qualifier in prospective mathematics teachers’ (PMTs) argumentation when constructing a mathematical proof about algebraic function. The data were collected through subjects' works on the proof, recorded think-aloud data, and in-depth interviews. Data analysis was guided by Toulmin’s argumentation scheme. The results show that the PMTs used three types of backing, i.e., backing in the form of definitions or theorems (reference backing), examples of numbers (numerical backing) and graphs of functions (graphical backing). The PMTs utilized the backings to strengthen deductive and inductive warrant. A numerical backing is used when a warrant cannot justify the truth of a claim. Graphical backing is used to convince oneself about the truth of the data that has been made while the reference backing is only clarification when students have understood or have knowledge of the statement given. Numerical and graphical backing relate directly to rebuttal and provide counter-examples and qualifier of the claim. A numerical backing makes students more confident about claims that are generated compared to reference backing. Keywords: Argumentation, Mathematical proof, Backing [Bahasa]: Penelitian kualitatif dengan desain fenomenologi ini bertujuan untuk menyelidiki penggunaan backing dan hubungannya dengan rebuttal dan qualifier dalam membangun bukti matematika terkait fungsi aljabar oleh calon guru matematika. Data dikumpulkan melalui hasil kerja siswa, rekaman think aloud, dan wawancara mendalam. Analisis data merujuk pada skema argumentasi Toulmin. Hasil penelitian menunjukkan bahwa backing yang digunakan siswa tidak hanya berbentuk teorema atau definisis (reference backing) tetapi juga contoh-contoh bilangan (numerical backing) dan grafik fungsi (graphical backing). Ketiga jenis backing tersebut untuk memperkuat warrant induktif maupun deduktif. Numerical backing digunakan ketika warrant tidak dapat menjustifikasi kebenaran klaim. Graphical backing digunakan untuk meyakinkan diri sendiri tentang kebenaran klaim yang telah dibuat sedangkan reference backing hanya bersifat klarifikasi karena siswa telah memahami pernyataan yang diberikan. Numerical backing dan graphical backing berhubungan langsung dengan rebuttal untuk memberikan contoh penyangkal dan jaminan kebenaran (qualifier) klaim. Numerical backing membuat siswa lebih percaya diri tentang klaim yang dihasilkan dibandingkan dengan reference backing. Kata kunci: Argumentasi, Bukti matematis, Backing  
未来数学教师在构建数学证明时的论证结构:支持的重要性
[英]:这项采用现象学设计的定性研究旨在调查在构建代数函数的数学证明时,在未来数学教师(PMT)的论证中,支持的使用及其与反驳和限定词的关系。这些数据是通过受试者的证明作品、录音的大声思考数据和深入访谈收集的。数据分析以图尔明的论证方案为指导。结果表明,PMT使用了三种类型的支持,即定义或定理形式的支持(参考支持)、数字示例(数字支持)和函数图(图形支持)。PMT利用背景来加强演绎和归纳保证。当搜查令不能证明索赔的真实性时,会使用数字支持。图形支持用于说服自己所做数据的真实性,而参考支持仅在学生理解或了解所给出的陈述时才进行澄清。数字和图形支持与反驳直接相关,并提供了索赔的反例和限定词。与参考支持相比,数字支持使学生对生成的声明更有信心。关键词:数据是通过学生作业、大声思考录音和深度访谈收集的。数据分析是指图尔敏论证方案。研究表明,学生使用的背衬不仅是定理或参考背衬,也是数字背衬和图形背衬的例子。这三种类型的担保加强了归纳或演绎担保。当认股权证不能证明申请许可的正当性时,使用数字支持。图形支持用于说服自己所做声明的真实性,而参考支持只是因为学生已经理解了给定的陈述而得到澄清。数字支持和图形支持与反驳直接相关,以举例说明驳回和限定索赔。与参考支持相比,数字支持使学生对所做的声明更有信心。关键字:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
7
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信