Reference dataset and benchmark for reconstructing laser parameters from on-axis video in powder bed fusion of bulk stainless steel

IF 4.2 Q2 ENGINEERING, MANUFACTURING
Cyril Blanc, Ayyoub Ahar, Kurt De Grave
{"title":"Reference dataset and benchmark for reconstructing laser parameters from on-axis video in powder bed fusion of bulk stainless steel","authors":"Cyril Blanc,&nbsp;Ayyoub Ahar,&nbsp;Kurt De Grave","doi":"10.1016/j.addlet.2023.100161","DOIUrl":null,"url":null,"abstract":"<div><p>We present <span>RAISE-LPBF</span>, a large dataset on the effect of laser power and laser dot speed in powder bed fusion (LPBF) of 316L stainless steel bulk material, monitored by on-axis 20k FPS video. Both process parameters are independently sampled for each scan line from a continuous distribution, so interactions of different parameter choices can be investigated. The data can be used to derive statistical properties of LPBF, as well as to build anomaly detectors. We provide example source code for loading the data, baseline machine learning models and results, and a public benchmark to evaluate predictive models.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"7 ","pages":"Article 100161"},"PeriodicalIF":4.2000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369023000427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

We present RAISE-LPBF, a large dataset on the effect of laser power and laser dot speed in powder bed fusion (LPBF) of 316L stainless steel bulk material, monitored by on-axis 20k FPS video. Both process parameters are independently sampled for each scan line from a continuous distribution, so interactions of different parameter choices can be investigated. The data can be used to derive statistical properties of LPBF, as well as to build anomaly detectors. We provide example source code for loading the data, baseline machine learning models and results, and a public benchmark to evaluate predictive models.

大块不锈钢粉末床聚变中基于轴上视频重建激光参数的参考数据集和基准
本文建立了一个大型数据集RAISE-LPBF,研究了激光功率和激光点速度对316L不锈钢块状材料粉末床熔合(LPBF)的影响,并通过轴向20k FPS视频进行了监控。两种工艺参数在连续分布的每条扫描线上独立采样,因此可以研究不同参数选择的相互作用。这些数据可以用来推导LPBF的统计性质,也可以用来建立异常检测器。我们提供了用于加载数据的示例源代码,基线机器学习模型和结果,以及评估预测模型的公共基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Additive manufacturing letters
Additive manufacturing letters Materials Science (General), Industrial and Manufacturing Engineering, Mechanics of Materials
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
37 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信