Zhiwei Miao, Qianqian Wang, Xiongjie Xiao, Ghulam Mustafa Kamal, Linhong Song, Xu Zhang, Conggang Li, Xin Zhou, Bin Jiang, Maili Liu
{"title":"CSI-LSTM: a web server to predict protein secondary structure using bidirectional long short term memory and NMR chemical shifts","authors":"Zhiwei Miao, Qianqian Wang, Xiongjie Xiao, Ghulam Mustafa Kamal, Linhong Song, Xu Zhang, Conggang Li, Xin Zhou, Bin Jiang, Maili Liu","doi":"10.1007/s10858-021-00383-9","DOIUrl":null,"url":null,"abstract":"<div><p>Protein secondary structure provides rich structural information, hence the description and understanding of protein structure relies heavily on it. Identification or prediction of secondary structures therefore plays an important role in protein research. In protein NMR studies, it is more convenient to predict secondary structures from chemical shifts as compared to the traditional determination methods based on inter-nuclear distances provided by NOESY experiment. In recent years, there was a significant improvement observed in deep neural networks, which had been applied in many research fields. Here we proposed a deep neural network based on bidirectional long short term memory (biLSTM) to predict protein 3-state secondary structure using NMR chemical shifts of backbone nuclei. While comparing with the existing methods the proposed method showed better prediction accuracy. Based on the proposed method, a web server has been built to provide protein secondary structure prediction service.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10858-021-00383-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Protein secondary structure provides rich structural information, hence the description and understanding of protein structure relies heavily on it. Identification or prediction of secondary structures therefore plays an important role in protein research. In protein NMR studies, it is more convenient to predict secondary structures from chemical shifts as compared to the traditional determination methods based on inter-nuclear distances provided by NOESY experiment. In recent years, there was a significant improvement observed in deep neural networks, which had been applied in many research fields. Here we proposed a deep neural network based on bidirectional long short term memory (biLSTM) to predict protein 3-state secondary structure using NMR chemical shifts of backbone nuclei. While comparing with the existing methods the proposed method showed better prediction accuracy. Based on the proposed method, a web server has been built to provide protein secondary structure prediction service.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.