Cover Picture: In Situ Studies of the Formation of Tungsten and Niobium Oxide Nanoparticles: Towards Automated Analysis of Reaction Pathways from PDF Analysis using the Pearson Correlation Coefficient (Chem. Methods 9/2022)
Emil T. S. Kjær, Olivia Aalling-Frederiksen, Dr. Long Yang, Nancy K. Thomas, Dr. Mikkel Juelsholt, Prof. Simon J. L. Billinge, Dr. Kirsten M. Ø. Jensen
{"title":"Cover Picture: In Situ Studies of the Formation of Tungsten and Niobium Oxide Nanoparticles: Towards Automated Analysis of Reaction Pathways from PDF Analysis using the Pearson Correlation Coefficient (Chem. Methods 9/2022)","authors":"Emil T. S. Kjær, Olivia Aalling-Frederiksen, Dr. Long Yang, Nancy K. Thomas, Dr. Mikkel Juelsholt, Prof. Simon J. L. Billinge, Dr. Kirsten M. Ø. Jensen","doi":"10.1002/cmtd.202200053","DOIUrl":null,"url":null,"abstract":"<p><b>The Front Cover</b> shows a sketch of the formation process of metal oxide nanoparticles, where nanocrystalline oxides form from fragments of polyoxometalates. In situ X-ray total scattering studies with Pair Distribution Function analysis can give new insights into the formation process, as it provides structural information on all stages of the reaction – from precursor ions in solution, over amorphous or nanostructured intermediates to the final crystalline material. Here, we show how the analysis of such data can be automated using structure mining and simple computational tools. More information can be found in the Research Article by EmilT. S. Kjær0000et al..\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202200053","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry methods : new approaches to solving problems in chemistry","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmtd.202200053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
The Front Cover shows a sketch of the formation process of metal oxide nanoparticles, where nanocrystalline oxides form from fragments of polyoxometalates. In situ X-ray total scattering studies with Pair Distribution Function analysis can give new insights into the formation process, as it provides structural information on all stages of the reaction – from precursor ions in solution, over amorphous or nanostructured intermediates to the final crystalline material. Here, we show how the analysis of such data can be automated using structure mining and simple computational tools. More information can be found in the Research Article by EmilT. S. Kjær0000et al..