C. Aldridge, D. M. Norris, Hunter R. Hatcher, Giancarlo Coppola, L. Miranda, M. Colvin
{"title":"Retention and Dimensional Changes of Supplemental Evergreen Brush Piles within a Flood Control Reservoir","authors":"C. Aldridge, D. M. Norris, Hunter R. Hatcher, Giancarlo Coppola, L. Miranda, M. Colvin","doi":"10.3996/jfwm-21-033","DOIUrl":null,"url":null,"abstract":"Brush piles (i.e., trees and large woody debris) are often installed in reservoirs to supplement fish habitat. The retention and dimensional change of brush piles after installation is important information that can be used to maximize the effectiveness of this management action. We evaluated the retention and dimensional change of 70 eastern red cedar Juniperus virginiana and bald cypress Taxodium distichum brush piles in an embayment of a drawdown reservoir up to four annual cycles of submergence and exposure. We used satellite imagery to supplement our onsite measurements of retention. We also examined spatial patterns of brush pile retention and dimensional change. Brush piles were lost at 10% per year and their volume at 14% per year. We compared our rates of brush pile retention and dimensional change with those from a holdout data set of 50 brush piles. Estimates between data sets did not differ statistically. Spatial patterns of retention and dimensional change coincided with morphological features in our study area, suggesting that retention and dimensional change is influenced by variable physical forces (e.g., wave action and flow) at installation locations. Our estimates of brush pile retention and dimensional change can be used to generally sustain desirable brush densities. For example, to maintain a fixed total volume of brush in our study embayment roughly 23% of the total brush volume installed would need to be replaced annually. Similar research in reservoirs managed for other purposes is needed as length and cycle of inundation could lead to variable rates of retention and dimensional change. Additionally, advancements into computer-assisted detection and volume estimation could reduce the time and effort needed to monitor brush piles.","PeriodicalId":49036,"journal":{"name":"Journal of Fish and Wildlife Management","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fish and Wildlife Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3996/jfwm-21-033","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 1
Abstract
Brush piles (i.e., trees and large woody debris) are often installed in reservoirs to supplement fish habitat. The retention and dimensional change of brush piles after installation is important information that can be used to maximize the effectiveness of this management action. We evaluated the retention and dimensional change of 70 eastern red cedar Juniperus virginiana and bald cypress Taxodium distichum brush piles in an embayment of a drawdown reservoir up to four annual cycles of submergence and exposure. We used satellite imagery to supplement our onsite measurements of retention. We also examined spatial patterns of brush pile retention and dimensional change. Brush piles were lost at 10% per year and their volume at 14% per year. We compared our rates of brush pile retention and dimensional change with those from a holdout data set of 50 brush piles. Estimates between data sets did not differ statistically. Spatial patterns of retention and dimensional change coincided with morphological features in our study area, suggesting that retention and dimensional change is influenced by variable physical forces (e.g., wave action and flow) at installation locations. Our estimates of brush pile retention and dimensional change can be used to generally sustain desirable brush densities. For example, to maintain a fixed total volume of brush in our study embayment roughly 23% of the total brush volume installed would need to be replaced annually. Similar research in reservoirs managed for other purposes is needed as length and cycle of inundation could lead to variable rates of retention and dimensional change. Additionally, advancements into computer-assisted detection and volume estimation could reduce the time and effort needed to monitor brush piles.
期刊介绍:
Journal of Fish and Wildlife Management encourages submission of original, high quality, English-language scientific papers on the practical application and integration of science to conservation and management of native North American fish, wildlife, plants and their habitats in the following categories: Articles, Notes, Surveys and Issues and Perspectives. Papers that do not relate directly to native North American fish, wildlife plants or their habitats may be considered if they highlight species that are closely related to, or conservation issues that are germane to, those in North America.