{"title":"Projectivity in (bounded) commutative integral residuated lattices","authors":"Paolo Aglianò, Sara Ugolini","doi":"10.1007/s00012-022-00798-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study projective algebras in varieties of (bounded) commutative integral residuated lattices. We make use of a well-established construction in residuated lattices, the ordinal sum, and the order property of divisibility. Via the connection between projective and splitting algebras, we show that the only finite projective algebra in <span>\\(\\mathsf {{FL}_{ew}}\\)</span> is the two-element Boolean algebra. Moreover, we show that several interesting varieties have the property that every finitely presented algebra is projective, such as locally finite varieties of hoops. Furthermore, we show characterization results for finite projective Heyting algebras, and finitely generated projective algebras in locally finite varieties of bounded hoops and BL-algebras. Finally, we connect our results with the algebraic theory of unification.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-022-00798-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper, we study projective algebras in varieties of (bounded) commutative integral residuated lattices. We make use of a well-established construction in residuated lattices, the ordinal sum, and the order property of divisibility. Via the connection between projective and splitting algebras, we show that the only finite projective algebra in \(\mathsf {{FL}_{ew}}\) is the two-element Boolean algebra. Moreover, we show that several interesting varieties have the property that every finitely presented algebra is projective, such as locally finite varieties of hoops. Furthermore, we show characterization results for finite projective Heyting algebras, and finitely generated projective algebras in locally finite varieties of bounded hoops and BL-algebras. Finally, we connect our results with the algebraic theory of unification.
期刊介绍:
Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.