Generic colourful tori and inverse spectral transform for Hankel operators

IF 0.8 Q2 MATHEMATICS
P. Gérard, S. Grellier
{"title":"Generic colourful tori and inverse spectral transform for Hankel operators","authors":"P. Gérard, S. Grellier","doi":"10.2140/tunis.2019.1.347","DOIUrl":null,"url":null,"abstract":"This paper explores the regularity properties of an inverse spectral transform for Hilbert--Schmidt Hankel operators on the unit disc. This spectral transform plays the role of action-angles variables for an integrable infinite dimensional Hamiltonian system -- the cubic Szeg\\\"o equation. We investigate the regularity of functions on the tori supporting the dynamics of this system, in connection with some wave turbulence phenomenon, discovered in a previous work and due to relative small gaps between the actions. We revisit this phenomenon by proving that generic smooth functions and a G $\\delta$ dense set of irregular functions do coexist on the same torus. On the other hand, we establish some uniform analytic regularity for tori corresponding to rapidly decreasing actions which satisfy some specific property ruling out the phenomenon of small gaps.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2017-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/tunis.2019.1.347","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2019.1.347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

This paper explores the regularity properties of an inverse spectral transform for Hilbert--Schmidt Hankel operators on the unit disc. This spectral transform plays the role of action-angles variables for an integrable infinite dimensional Hamiltonian system -- the cubic Szeg\"o equation. We investigate the regularity of functions on the tori supporting the dynamics of this system, in connection with some wave turbulence phenomenon, discovered in a previous work and due to relative small gaps between the actions. We revisit this phenomenon by proving that generic smooth functions and a G $\delta$ dense set of irregular functions do coexist on the same torus. On the other hand, we establish some uniform analytic regularity for tori corresponding to rapidly decreasing actions which satisfy some specific property ruling out the phenomenon of small gaps.
Hankel算子的一般彩色环面和谱逆变换
本文研究单位圆盘上Hilbert-Schmidt-Hankel算子逆谱变换的正则性。对于可积的无穷维哈密顿系统——三次Szeg,这种谱变换扮演着作用角变量的角色\“o方程。我们研究了托里上支持该系统动力学的函数的正则性,与先前工作中发现的一些波湍流现象有关,并且由于作用之间的间隙相对较小。我们通过证明一般光滑函数和G$\delta$稠密不规则函数集确实共存于同一个托里来重新审视这一现象她手上,我们建立了tori对应于快速递减作用的一些统一的分析规则,这些规则满足一些特定的性质,排除了小间隙现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tunisian Journal of Mathematics
Tunisian Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信