A new numerical formulation for the generalized time-fractional Benjamin Bona Mohany Burgers’ equation

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
Reetika Chawla, Komal Deswal, Devendra Kumar
{"title":"A new numerical formulation for the generalized time-fractional Benjamin Bona Mohany Burgers’ equation","authors":"Reetika Chawla, Komal Deswal, Devendra Kumar","doi":"10.1515/ijnsns-2022-0209","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we present a novel numerical formulation for the generalized time-fractional Benjamin Bona Mohany Burgers’ (BBMB) equation using Atangana Baleanu Caputo (ABC) derivative. First, we apply a linearization technique to deal with the generalized non-linear expression, and then the Crank–Nicolson finite difference formula is used in the temporal direction. A reliable numerical technique is applied to discretize the time-fractional ABC derivative, and the central difference formulae are used to approximate the derivatives in the spatial direction. The method is shown unconditionally stable and second-order convergent in both directions through the Fourier analysis. The numerical results of two test problems are analyzed to validate the theoretical results.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":"24 1","pages":"883 - 898"},"PeriodicalIF":1.4000,"publicationDate":"2022-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2022-0209","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In this article, we present a novel numerical formulation for the generalized time-fractional Benjamin Bona Mohany Burgers’ (BBMB) equation using Atangana Baleanu Caputo (ABC) derivative. First, we apply a linearization technique to deal with the generalized non-linear expression, and then the Crank–Nicolson finite difference formula is used in the temporal direction. A reliable numerical technique is applied to discretize the time-fractional ABC derivative, and the central difference formulae are used to approximate the derivatives in the spatial direction. The method is shown unconditionally stable and second-order convergent in both directions through the Fourier analysis. The numerical results of two test problems are analyzed to validate the theoretical results.
广义时间分数型Benjamin Bona Mohany Burgers方程的一种新的数值形式
摘要本文利用Atangana-Baleanu-Caputo(ABC)导数,给出了广义时间分式Benjamin-Bona-Mohany-Burgers(BBMB)方程的一个新的数值公式。首先,我们应用线性化技术来处理广义非线性表达式,然后在时间方向上使用Crank–Nicolson有限差分公式。应用可靠的数值技术离散时间分数ABC导数,并使用中心差分公式在空间方向上近似导数。傅立叶分析表明,该方法在两个方向上都是无条件稳定和二阶收敛的。对两个试验问题的数值结果进行了分析,验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
6.70%
发文量
117
审稿时长
13.7 months
期刊介绍: The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信