{"title":"Equilibrium scour hole size at setback abutments with varied aspect ratios in floodplains","authors":"Ahmed A. Abdelaziz , Siow Y. Lim","doi":"10.1016/j.jher.2022.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>The key features of the equilibrium scour depth <span><math><msub><mi>d</mi><mrow><mi>se</mi></mrow></msub></math></span>, width <span><math><msub><mi>W</mi><mrow><mi>se</mi></mrow></msub></math></span>, length <span><math><msub><mi>L</mi><mrow><mi>se</mi></mrow></msub></math></span> and the volume <span><math><msub><mi>V</mi><mrow><mi>se</mi></mrow></msub></math></span> with large abutment aspect ratios (i.e., abutment width <span><math><msub><mi>L</mi><mi>c</mi></msub></math></span> divided by its length <span><math><mi>L</mi></math></span>) in floodplain are different compared to narrow abutments. Seven models with <span><math><mrow><msub><mi>L</mi><mi>c</mi></msub><mo>/</mo><mi>L</mi></mrow></math></span> ranging from 0.125 (narrow abutment) to 4 (very wide abutment) were tested. The results show that the combined effect in terms of the abutment aspect ratio <span><math><mrow><msub><mi>L</mi><mi>c</mi></msub><mo>/</mo><mi>L</mi></mrow></math></span> is a key parameter with wide abutments. Furthermore, the average equilibrium scour width observed was much larger than previous studies and extends up to 3.5 times the floodplain water depth. This implies the current guideline by <span>FHWA (Federal Highway Administration), (2009)</span> to provide a riprap countermeasure apron width for 2 times the floodplain water depth may be insufficient. The much wider scour formation is caused by the migration of the maximum scour location around wide abutments. The results show generally the scour hole dimensions for setback abutments in compound channel are less than that abutments in rectangular channel under the same flow conditions. To this end, empirical equations, which agree well with the data from the present and previous studies are proposed to predict these characteristics at the equilibrium state.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"42 ","pages":"Pages 21-30"},"PeriodicalIF":2.4000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydro-environment Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157064432200020X","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1
Abstract
The key features of the equilibrium scour depth , width , length and the volume with large abutment aspect ratios (i.e., abutment width divided by its length ) in floodplain are different compared to narrow abutments. Seven models with ranging from 0.125 (narrow abutment) to 4 (very wide abutment) were tested. The results show that the combined effect in terms of the abutment aspect ratio is a key parameter with wide abutments. Furthermore, the average equilibrium scour width observed was much larger than previous studies and extends up to 3.5 times the floodplain water depth. This implies the current guideline by FHWA (Federal Highway Administration), (2009) to provide a riprap countermeasure apron width for 2 times the floodplain water depth may be insufficient. The much wider scour formation is caused by the migration of the maximum scour location around wide abutments. The results show generally the scour hole dimensions for setback abutments in compound channel are less than that abutments in rectangular channel under the same flow conditions. To this end, empirical equations, which agree well with the data from the present and previous studies are proposed to predict these characteristics at the equilibrium state.
期刊介绍:
The journal aims to provide an international platform for the dissemination of research and engineering applications related to water and hydraulic problems in the Asia-Pacific region. The journal provides a wide distribution at affordable subscription rate, as well as a rapid reviewing and publication time. The journal particularly encourages papers from young researchers.
Papers that require extensive language editing, qualify for editorial assistance with American Journal Experts, a Language Editing Company that Elsevier recommends. Authors submitting to this journal are entitled to a 10% discount.