Lucas H. G. Resende, R. Finotti, F. Barbosa, Hernán Garrido, A. Cury, Martín Domizio
{"title":"Damage identification using convolutional neural networks from instantaneous displacement measurements via image processing","authors":"Lucas H. G. Resende, R. Finotti, F. Barbosa, Hernán Garrido, A. Cury, Martín Domizio","doi":"10.1177/14759217231193102","DOIUrl":null,"url":null,"abstract":"This work investigates the effectiveness of using convolutional neural networks (CNNs) and instantaneous displacement measurements for damage identification in beams. The study involves subjecting laboratory beams to eight distinct damage scenarios and capturing the vertical positions of 60 points along the beam length during free-vibration tests using a high-speed camera. The data obtained was subsequently used to train a CNN in a supervised manner to estimate the level of damage at each point. Results showed that the CNN models were able to correctly localize and quantify the damage levels when trained on data from all damage scenarios. The soundness of the proposed methodology was demonstrated in a robustness assessment, where all eight damage scenarios were correctly identified even when two of them were excluded from the training dataset.","PeriodicalId":51184,"journal":{"name":"Structural Health Monitoring-An International Journal","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Health Monitoring-An International Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14759217231193102","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work investigates the effectiveness of using convolutional neural networks (CNNs) and instantaneous displacement measurements for damage identification in beams. The study involves subjecting laboratory beams to eight distinct damage scenarios and capturing the vertical positions of 60 points along the beam length during free-vibration tests using a high-speed camera. The data obtained was subsequently used to train a CNN in a supervised manner to estimate the level of damage at each point. Results showed that the CNN models were able to correctly localize and quantify the damage levels when trained on data from all damage scenarios. The soundness of the proposed methodology was demonstrated in a robustness assessment, where all eight damage scenarios were correctly identified even when two of them were excluded from the training dataset.
期刊介绍:
Structural Health Monitoring is an international peer reviewed journal that publishes the highest quality original research that contain theoretical, analytical, and experimental investigations that advance the body of knowledge and its application in the discipline of structural health monitoring.