{"title":"Invariant measure of stochastic Boussinesq equation with zero viscosity in Banach space","authors":"Shang Wu, Zhiming Liu, Jianhua Huang","doi":"10.1080/14689367.2022.2128991","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the stochastic Boussinesq equations driven by Gaussian noise on a two-dimensional domain . By the regularity estimation on the high-order Sobolev space, we prove the existence of weak solutions in non-separable Banach space. We also show that the Markov semigroup generated by the solution of stochastic Boussinesq equations is also weak Feller. Endowed with the weak-★ topology on , we prove the existence of the invariant measure by Krylov–Bogoliubov theorem.","PeriodicalId":50564,"journal":{"name":"Dynamical Systems-An International Journal","volume":"38 1","pages":"1 - 19"},"PeriodicalIF":0.5000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamical Systems-An International Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2022.2128991","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate the stochastic Boussinesq equations driven by Gaussian noise on a two-dimensional domain . By the regularity estimation on the high-order Sobolev space, we prove the existence of weak solutions in non-separable Banach space. We also show that the Markov semigroup generated by the solution of stochastic Boussinesq equations is also weak Feller. Endowed with the weak-★ topology on , we prove the existence of the invariant measure by Krylov–Bogoliubov theorem.
期刊介绍:
Dynamical Systems: An International Journal is a world-leading journal acting as a forum for communication across all branches of modern dynamical systems, and especially as a platform to facilitate interaction between theory and applications. This journal publishes high quality research articles in the theory and applications of dynamical systems, especially (but not exclusively) nonlinear systems. Advances in the following topics are addressed by the journal:
•Differential equations
•Bifurcation theory
•Hamiltonian and Lagrangian dynamics
•Hyperbolic dynamics
•Ergodic theory
•Topological and smooth dynamics
•Random dynamical systems
•Applications in technology, engineering and natural and life sciences