Microfactory Design for Valorization of E-Waste Plastics (Acrylonitrile-Butadiene-Styrene, Polycarbonate, and Polypropylene) on Additive Manufacturing Sector

IF 4.6 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Recycling Pub Date : 2023-05-01 DOI:10.3390/recycling8030046
Alejandro Moure Abelenda, F. Aiouache
{"title":"Microfactory Design for Valorization of E-Waste Plastics (Acrylonitrile-Butadiene-Styrene, Polycarbonate, and Polypropylene) on Additive Manufacturing Sector","authors":"Alejandro Moure Abelenda, F. Aiouache","doi":"10.3390/recycling8030046","DOIUrl":null,"url":null,"abstract":"Less than half of e-waste plastics are sorted worldwide, and this rate is likely to decline as major processing countries have banned importation of e-waste plastics. This forces the development of decentralized processing facilities, also known as microfactories. The present work investigates the recyclability of different grades of acrylonitrile-butadiene-styrene (ABS) copolymer, polycarbonate, and polypropylene, which were found to be very abundant in a recycling site in the UK. The determination of the matrix relied on the resin identification codes imprinted in the e-waste plastics and subsequent Fourier-transform infrared spectroscopy (FTIR). Melt-blend extrusion technology enabled the valorization of the wasted thermoplastics as 3D filament without significant degradation of the polymers. The recycled materials maintained the tensile strength at around 2.5 MPa in agreement with the specifications offered by virgin polymers. Further characterization was done by means of laser microscope, thermogravimetric analysis, and X-ray fluorescence to determine the commercial viability of the recycled filament. A modified solvent-based method was developed with acetone to remove the brominated flame retardants: 25 g/100 mL, 30 min of contact time, and 4 extraction steps. The FTIR results show that the degradation of the rubbery dispersed phase corresponding to the butadiene can be accumulated in the less soluble fraction of the extracted ABS.","PeriodicalId":36729,"journal":{"name":"Recycling","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recycling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/recycling8030046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Less than half of e-waste plastics are sorted worldwide, and this rate is likely to decline as major processing countries have banned importation of e-waste plastics. This forces the development of decentralized processing facilities, also known as microfactories. The present work investigates the recyclability of different grades of acrylonitrile-butadiene-styrene (ABS) copolymer, polycarbonate, and polypropylene, which were found to be very abundant in a recycling site in the UK. The determination of the matrix relied on the resin identification codes imprinted in the e-waste plastics and subsequent Fourier-transform infrared spectroscopy (FTIR). Melt-blend extrusion technology enabled the valorization of the wasted thermoplastics as 3D filament without significant degradation of the polymers. The recycled materials maintained the tensile strength at around 2.5 MPa in agreement with the specifications offered by virgin polymers. Further characterization was done by means of laser microscope, thermogravimetric analysis, and X-ray fluorescence to determine the commercial viability of the recycled filament. A modified solvent-based method was developed with acetone to remove the brominated flame retardants: 25 g/100 mL, 30 min of contact time, and 4 extraction steps. The FTIR results show that the degradation of the rubbery dispersed phase corresponding to the butadiene can be accumulated in the less soluble fraction of the extracted ABS.
增材制造行业电子废弃物塑料(丙烯腈-丁二烯-苯乙烯、聚碳酸酯和聚丙烯)的微工厂设计
全球只有不到一半的电子废塑料被分类,随着主要加工国禁止进口电子废塑料,这一比例可能会下降。这迫使分散处理设施的发展,也称为微工厂。本工作调查了不同等级的丙烯腈-丁二烯-苯乙烯(ABS)共聚物、聚碳酸酯和聚丙烯的可回收性,这些材料在英国的一个回收点中发现非常丰富。基质的测定依赖于印在电子废塑料中的树脂识别码和随后的傅立叶变换红外光谱(FTIR)。熔融共混挤出技术使废弃的热塑性塑料能够作为3D细丝进行估价,而不会显著降解聚合物。回收材料的抗拉强度保持在2.5MPa左右,与原始聚合物提供的规格一致。通过激光显微镜、热重分析和X射线荧光进行进一步表征,以确定回收长丝的商业可行性。用丙酮开发了一种改进的基于溶剂的方法来去除溴化阻燃剂:25 g/100 mL,接触时间30分钟,4个提取步骤。FTIR结果表明,对应于丁二烯的橡胶分散相的降解可以累积在提取的ABS的不太可溶的部分中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Recycling
Recycling Environmental Science-Management, Monitoring, Policy and Law
CiteScore
6.80
自引率
7.00%
发文量
84
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信