Mariana-Gratiela Soare (Vladu), M. Petrescu, M. Eremia
{"title":"Comparative study for obtaining inulinase and invertase by yeasts","authors":"Mariana-Gratiela Soare (Vladu), M. Petrescu, M. Eremia","doi":"10.25083/rbl/26.5/3002.3007","DOIUrl":null,"url":null,"abstract":"The aim of this comparative study was to obtain a model for production of inulinase and invertase by species Saccharomyces, Candida and Hansenula, strains from culture collection of INCDCF-ICCF, using submerged fermentation in a medium containing inulin as source of C. This model explained the data variation and the actual relationships between the parameters and responses. The dry biomass content as well as the production of inulinase and invertase in the bioprocess medium was influenced by inulin concentration and microelement composition. The main parameters for bioprocesses were: inoculum size 2% (v/v), pH 6, temperature 280 C and 220 rpm agitation speed. Following comparative study for production of extracellular inulinase (exo and endo inulinase) and invertase were obtained for Candida arborea the best results, invertase production having significantly higher concentrations than inulinase (35.92 U/mL invertase activity vs. 8.01 U/mL inulinase activity), on M5 medium. These results could be useful for industrial applications such as food industry, pharmaceutical.","PeriodicalId":21566,"journal":{"name":"Romanian Biotechnological Letters","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Romanian Biotechnological Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25083/rbl/26.5/3002.3007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The aim of this comparative study was to obtain a model for production of inulinase and invertase by species Saccharomyces, Candida and Hansenula, strains from culture collection of INCDCF-ICCF, using submerged fermentation in a medium containing inulin as source of C. This model explained the data variation and the actual relationships between the parameters and responses. The dry biomass content as well as the production of inulinase and invertase in the bioprocess medium was influenced by inulin concentration and microelement composition. The main parameters for bioprocesses were: inoculum size 2% (v/v), pH 6, temperature 280 C and 220 rpm agitation speed. Following comparative study for production of extracellular inulinase (exo and endo inulinase) and invertase were obtained for Candida arborea the best results, invertase production having significantly higher concentrations than inulinase (35.92 U/mL invertase activity vs. 8.01 U/mL inulinase activity), on M5 medium. These results could be useful for industrial applications such as food industry, pharmaceutical.