{"title":"Large-Bandwidth High-Gain Low-Noise Transimpedance Amplifier for Scanning Tunneling Microscope","authors":"Ying-Xin Liang","doi":"10.1134/S0020441223020264","DOIUrl":null,"url":null,"abstract":"<p>In this work, a design of large-bandwidth high-gain low-noise transimpedance amplifier (TIA) for scanning tunneling microscope (STM) is proposed. The simulations show that the proposed TIA has the bandwidth higher than 200 kHz, two orders of magnitude higher than those of conventional commercial TIAs for STM. At low frequencies, the noises of the proposed TIA are almost the same as the conventional commercial ones with the same transimpedance gain. At high frequencies, its calculated input equivalent noise voltage power spectral density (PSD) is 40 nV<sup>2</sup>/Hz and its input equivalent noise current PSD is 3.2 fA<sup>2</sup>/Hz at 10 kHz. The corresponding values are 23 nV<sup>2</sup>/Hz and 88 fA<sup>2</sup>/Hz at 100 kHz. The STM with the proposed TIA can meet the needs of fast high-quaility STM imaging measurements and fast high-energy-resolution scanning tunneling spectra measurements for the low-conducting materials, such as complex organic systems and wide bandgap semiconductors.</p>","PeriodicalId":587,"journal":{"name":"Instruments and Experimental Techniques","volume":"66 2","pages":"350 - 357"},"PeriodicalIF":0.4000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instruments and Experimental Techniques","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0020441223020264","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a design of large-bandwidth high-gain low-noise transimpedance amplifier (TIA) for scanning tunneling microscope (STM) is proposed. The simulations show that the proposed TIA has the bandwidth higher than 200 kHz, two orders of magnitude higher than those of conventional commercial TIAs for STM. At low frequencies, the noises of the proposed TIA are almost the same as the conventional commercial ones with the same transimpedance gain. At high frequencies, its calculated input equivalent noise voltage power spectral density (PSD) is 40 nV2/Hz and its input equivalent noise current PSD is 3.2 fA2/Hz at 10 kHz. The corresponding values are 23 nV2/Hz and 88 fA2/Hz at 100 kHz. The STM with the proposed TIA can meet the needs of fast high-quaility STM imaging measurements and fast high-energy-resolution scanning tunneling spectra measurements for the low-conducting materials, such as complex organic systems and wide bandgap semiconductors.
期刊介绍:
Instruments and Experimental Techniques is an international peer reviewed journal that publishes reviews describing advanced methods for physical measurements and techniques and original articles that present techniques for physical measurements, principles of operation, design, methods of application, and analysis of the operation of physical instruments used in all fields of experimental physics and when conducting measurements using physical methods and instruments in astronomy, natural sciences, chemistry, biology, medicine, and ecology.