Numerical investigation on the process of obstructing granular flow by multi-layer rigid netting barriers

IF 2.3 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yunyun Fan, Siqi Su, Fang Zhang, Fengyuan Wu
{"title":"Numerical investigation on the process of obstructing granular flow by multi-layer rigid netting barriers","authors":"Yunyun Fan,&nbsp;Siqi Su,&nbsp;Fang Zhang,&nbsp;Fengyuan Wu","doi":"10.1007/s10035-023-01362-7","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-layer rigid netting barriers (RNBs) can obstruct the granular flow layer by layer, and all the layers of the structures share the impact load, which has better reliability than single-layer structure. However, the granular flow obstructed by multi-layer RNBs is complicated. The grains between the layers of RNBs may make the forces acting on all structures related to each other. Under the limited testing conditions, it is difficult to obtain several important information such as the obstruction efficiency of structural barriers and the impact forces acting on the RNBs at all layers. In this study, the discrete element method is used to numerically simulate a typical granular flow experiment. Based on the numerical verification, the method was used to study the mechanical characteristics of the RNBs at all layers and the typical process of granular flow under different settings. The results show that the numerical calculation can not only simulate the rebound, run-up, splash, passing-through and other movements of grains during the obstruction process, but also obtain the mechanical characteristics of the RNBs at all layers that are related to each other caused by the grains between the RNBs, and the final deposition of grains in front of the RNBs. The mesh and position settings of the protective structures have a significant influence on the forces acting on the RNBs at all layers, so adjusting the RNB settings through numerical optimization can make the forces on RNBs more reasonable and optimize the design of the protective structures. At the same time, the grain segregation characteristics in front of the RNBs obtained by the numerical simulation can provide a basis for further research on the physical and mechanical characteristics and the stability of the deposition.</p></div>","PeriodicalId":582,"journal":{"name":"Granular Matter","volume":"25 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-023-01362-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-layer rigid netting barriers (RNBs) can obstruct the granular flow layer by layer, and all the layers of the structures share the impact load, which has better reliability than single-layer structure. However, the granular flow obstructed by multi-layer RNBs is complicated. The grains between the layers of RNBs may make the forces acting on all structures related to each other. Under the limited testing conditions, it is difficult to obtain several important information such as the obstruction efficiency of structural barriers and the impact forces acting on the RNBs at all layers. In this study, the discrete element method is used to numerically simulate a typical granular flow experiment. Based on the numerical verification, the method was used to study the mechanical characteristics of the RNBs at all layers and the typical process of granular flow under different settings. The results show that the numerical calculation can not only simulate the rebound, run-up, splash, passing-through and other movements of grains during the obstruction process, but also obtain the mechanical characteristics of the RNBs at all layers that are related to each other caused by the grains between the RNBs, and the final deposition of grains in front of the RNBs. The mesh and position settings of the protective structures have a significant influence on the forces acting on the RNBs at all layers, so adjusting the RNB settings through numerical optimization can make the forces on RNBs more reasonable and optimize the design of the protective structures. At the same time, the grain segregation characteristics in front of the RNBs obtained by the numerical simulation can provide a basis for further research on the physical and mechanical characteristics and the stability of the deposition.

Abstract Image

多层刚性网障阻挡颗粒流动过程的数值研究
多层刚性网屏障能逐层阻挡颗粒流,各层结构均分担冲击载荷,比单层结构具有更好的可靠性。然而,多层rnb对颗粒流动的阻碍是复杂的。rnb层间的晶粒可能使力作用于所有相互关联的结构。在有限的试验条件下,很难获得结构障碍物的阻挡效率和作用在各层rnb上的冲击力等几个重要信息。本文采用离散元法对典型颗粒流实验进行数值模拟。在数值验证的基础上,采用该方法研究了各层rnb的力学特性以及不同设置下颗粒流动的典型过程。结果表明,数值计算不仅可以模拟颗粒在拦阻过程中的反弹、助跑、飞溅、穿越等运动,还可以获得各层颗粒之间的颗粒引起的相互关联的颗粒的力学特性,以及颗粒在颗粒前的最终沉积。防护结构的网格和位置设置对作用在各层挡板上的力有显著影响,因此通过数值优化调整挡板设置可以使挡板上的力更加合理,从而优化防护结构的设计。同时,通过数值模拟得到rnb前的晶粒偏析特征,可以为进一步研究沉积的物理力学特性和稳定性提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Granular Matter
Granular Matter Materials Science-General Materials Science
CiteScore
4.60
自引率
8.30%
发文量
95
审稿时长
6 months
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信