Looking at QED with Dyson–Schwinger Equations: Basic Equations, Ward–Takahashi Identities and the Two-Photon-Two-Fermion Irreducible Vertex

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Orlando Oliveira, Helena Lessa Macedo, Rodrigo Carmo Terin
{"title":"Looking at QED with Dyson–Schwinger Equations: Basic Equations, Ward–Takahashi Identities and the Two-Photon-Two-Fermion Irreducible Vertex","authors":"Orlando Oliveira,&nbsp;Helena Lessa Macedo,&nbsp;Rodrigo Carmo Terin","doi":"10.1007/s00601-023-01846-5","DOIUrl":null,"url":null,"abstract":"<div><p>A minimal truncated set of the integral Dyson–Schwinger equations, in Minkowski spacetime, that allows to explore QED beyond its perturbative solution is derived for general linear covariant gauges. The minimal set includes the equations for the fermion and photon propagators, the photon-fermion vertex, and the two-photon-two-fermion one-particle-irreducible diagram. If the first three equations are exact, to build a closed set of equations, the two-photon-two-fermion equation is truncated ignoring the contribution of Green functions with large number of external legs. It is shown that the truncated equation for the two-photon-two-fermion vertex reproduces the lowest-order perturbative result in the limit of the small coupling constant. Furthermore, this equation allows to define an iterative procedure to compute higher order corrections in the coupling constant. The Ward–Takahashi identity for the two-photon-two-fermion irreducible vertex is derived and solved in the soft photon limit, where one of the photon momenta vanish, in the low photon momenta limit and for general kinematics. The solution of the Ward–Takahashi identity determines the longitudinal component of the two-photon-two-fermion irreducible vertex, while it is proposed to use the Dyson–Schwinger equation to determine the transverse part of this irreducible diagram. The two-photon-two-fermion DSE is solved in heavy fermion limit, considering a simplified version of the QED vertices. The contribution of this irreducible vertex to a low-energy effective photon-fermion vertex is discussed and the fermionic operators that are generated are computed in terms of the fermion propagator functions.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"64 3","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00601-023-01846-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Few-Body Systems","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00601-023-01846-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A minimal truncated set of the integral Dyson–Schwinger equations, in Minkowski spacetime, that allows to explore QED beyond its perturbative solution is derived for general linear covariant gauges. The minimal set includes the equations for the fermion and photon propagators, the photon-fermion vertex, and the two-photon-two-fermion one-particle-irreducible diagram. If the first three equations are exact, to build a closed set of equations, the two-photon-two-fermion equation is truncated ignoring the contribution of Green functions with large number of external legs. It is shown that the truncated equation for the two-photon-two-fermion vertex reproduces the lowest-order perturbative result in the limit of the small coupling constant. Furthermore, this equation allows to define an iterative procedure to compute higher order corrections in the coupling constant. The Ward–Takahashi identity for the two-photon-two-fermion irreducible vertex is derived and solved in the soft photon limit, where one of the photon momenta vanish, in the low photon momenta limit and for general kinematics. The solution of the Ward–Takahashi identity determines the longitudinal component of the two-photon-two-fermion irreducible vertex, while it is proposed to use the Dyson–Schwinger equation to determine the transverse part of this irreducible diagram. The two-photon-two-fermion DSE is solved in heavy fermion limit, considering a simplified version of the QED vertices. The contribution of this irreducible vertex to a low-energy effective photon-fermion vertex is discussed and the fermionic operators that are generated are computed in terms of the fermion propagator functions.

Abstract Image

用Dyson-Schwinger方程看QED:基本方程,Ward-Takahashi恒等式和双光子-双费米子不可约顶点
对于一般线性协变量规,导出了闵可夫斯基时空中允许探索超越其微扰解的QED的积分Dyson-Schwinger方程的最小截断集。最小集包括费米子和光子传播子的方程、光子-费米子顶点和双光子-两费米子单粒子不可约图。如果前三个方程是精确的,为了建立一个封闭的方程集,将双光子-双费米子方程截断,忽略具有大量外支腿的格林函数的贡献。结果表明,双光子-双费米子顶点的截断方程再现了小耦合常数极限下的最低阶微扰结果。此外,该方程允许定义一个迭代过程来计算耦合常数的高阶修正。导出了双光子-双费米子不可约顶点的Ward-Takahashi恒等式,并在其中一个光子动量消失的软光子极限、低光子动量极限和一般运动学条件下求解了该恒等式。Ward-Takahashi恒等式的解确定了双光子-双费米子不可约顶点的纵向分量,同时提出了用Dyson-Schwinger方程确定不可约图的横向部分。双光子-双费米子DSE在重费米子极限下求解,考虑了QED顶点的简化版本。讨论了该不可约顶点对低能量有效光子-费米子顶点的贡献,并根据费米子传播子函数计算了由此产生的费米子算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Few-Body Systems
Few-Body Systems 物理-物理:综合
CiteScore
2.90
自引率
18.80%
发文量
64
审稿时长
6-12 weeks
期刊介绍: The journal Few-Body Systems presents original research work – experimental, theoretical and computational – investigating the behavior of any classical or quantum system consisting of a small number of well-defined constituent structures. The focus is on the research methods, properties, and results characteristic of few-body systems. Examples of few-body systems range from few-quark states, light nuclear and hadronic systems; few-electron atomic systems and small molecules; and specific systems in condensed matter and surface physics (such as quantum dots and highly correlated trapped systems), up to and including large-scale celestial structures. Systems for which an equivalent one-body description is available or can be designed, and large systems for which specific many-body methods are needed are outside the scope of the journal. The journal is devoted to the publication of all aspects of few-body systems research and applications. While concentrating on few-body systems well-suited to rigorous solutions, the journal also encourages interdisciplinary contributions that foster common approaches and insights, introduce and benchmark the use of novel tools (e.g. machine learning) and develop relevant applications (e.g. few-body aspects in quantum technologies).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信