Orlando Oliveira, Helena Lessa Macedo, Rodrigo Carmo Terin
{"title":"Looking at QED with Dyson–Schwinger Equations: Basic Equations, Ward–Takahashi Identities and the Two-Photon-Two-Fermion Irreducible Vertex","authors":"Orlando Oliveira, Helena Lessa Macedo, Rodrigo Carmo Terin","doi":"10.1007/s00601-023-01846-5","DOIUrl":null,"url":null,"abstract":"<div><p>A minimal truncated set of the integral Dyson–Schwinger equations, in Minkowski spacetime, that allows to explore QED beyond its perturbative solution is derived for general linear covariant gauges. The minimal set includes the equations for the fermion and photon propagators, the photon-fermion vertex, and the two-photon-two-fermion one-particle-irreducible diagram. If the first three equations are exact, to build a closed set of equations, the two-photon-two-fermion equation is truncated ignoring the contribution of Green functions with large number of external legs. It is shown that the truncated equation for the two-photon-two-fermion vertex reproduces the lowest-order perturbative result in the limit of the small coupling constant. Furthermore, this equation allows to define an iterative procedure to compute higher order corrections in the coupling constant. The Ward–Takahashi identity for the two-photon-two-fermion irreducible vertex is derived and solved in the soft photon limit, where one of the photon momenta vanish, in the low photon momenta limit and for general kinematics. The solution of the Ward–Takahashi identity determines the longitudinal component of the two-photon-two-fermion irreducible vertex, while it is proposed to use the Dyson–Schwinger equation to determine the transverse part of this irreducible diagram. The two-photon-two-fermion DSE is solved in heavy fermion limit, considering a simplified version of the QED vertices. The contribution of this irreducible vertex to a low-energy effective photon-fermion vertex is discussed and the fermionic operators that are generated are computed in terms of the fermion propagator functions.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"64 3","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00601-023-01846-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Few-Body Systems","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00601-023-01846-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A minimal truncated set of the integral Dyson–Schwinger equations, in Minkowski spacetime, that allows to explore QED beyond its perturbative solution is derived for general linear covariant gauges. The minimal set includes the equations for the fermion and photon propagators, the photon-fermion vertex, and the two-photon-two-fermion one-particle-irreducible diagram. If the first three equations are exact, to build a closed set of equations, the two-photon-two-fermion equation is truncated ignoring the contribution of Green functions with large number of external legs. It is shown that the truncated equation for the two-photon-two-fermion vertex reproduces the lowest-order perturbative result in the limit of the small coupling constant. Furthermore, this equation allows to define an iterative procedure to compute higher order corrections in the coupling constant. The Ward–Takahashi identity for the two-photon-two-fermion irreducible vertex is derived and solved in the soft photon limit, where one of the photon momenta vanish, in the low photon momenta limit and for general kinematics. The solution of the Ward–Takahashi identity determines the longitudinal component of the two-photon-two-fermion irreducible vertex, while it is proposed to use the Dyson–Schwinger equation to determine the transverse part of this irreducible diagram. The two-photon-two-fermion DSE is solved in heavy fermion limit, considering a simplified version of the QED vertices. The contribution of this irreducible vertex to a low-energy effective photon-fermion vertex is discussed and the fermionic operators that are generated are computed in terms of the fermion propagator functions.
期刊介绍:
The journal Few-Body Systems presents original research work – experimental, theoretical and computational – investigating the behavior of any classical or quantum system consisting of a small number of well-defined constituent structures. The focus is on the research methods, properties, and results characteristic of few-body systems. Examples of few-body systems range from few-quark states, light nuclear and hadronic systems; few-electron atomic systems and small molecules; and specific systems in condensed matter and surface physics (such as quantum dots and highly correlated trapped systems), up to and including large-scale celestial structures.
Systems for which an equivalent one-body description is available or can be designed, and large systems for which specific many-body methods are needed are outside the scope of the journal.
The journal is devoted to the publication of all aspects of few-body systems research and applications. While concentrating on few-body systems well-suited to rigorous solutions, the journal also encourages interdisciplinary contributions that foster common approaches and insights, introduce and benchmark the use of novel tools (e.g. machine learning) and develop relevant applications (e.g. few-body aspects in quantum technologies).