{"title":"Mapping spatial distribution of comm-satellite's beam based on ground omni-antennas","authors":"Zixuan Ren, Jin Jin, Wei Li, Yafeng Zhan","doi":"10.1002/sat.1473","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The current satellite communications (SatComs) systems are composed of a large number of satellites, beams and terrestrial devices. Due to their multinode dynamic nature, the usage of frequency resources is variable, complex and difficult to characterize. In particular, with the development of satellite-borne phased array antenna technology, SatCom beams carrying different frequencies are directionally and dynamically distributed in global scale. Mapping and locating the spatial beam distributions of communication satellite (comm-satellite) are the bases of intersystem cofrequency interference mitigation and spatial frequency reuse. In this paper, we design a data selection–multiparameter fitting iteration (DS-MFI) algorithm on the basis of ground-based omnidirectional antennas. The proposed approach can effectively map the spatial distribution of comm-satellite's beam, including satellite transmitter position, equal-gain off-axis angle, and beam pointing in azimuth and elevation. Simulation results verify the effectiveness of the proposed approach for satellites with fixed or steerable beams at different altitudes. Furthermore, the results become increasingly accurate as the dense of ground omni-antenna increases.</p>\n </div>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"41 4","pages":"374-391"},"PeriodicalIF":0.9000,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Satellite Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/sat.1473","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
The current satellite communications (SatComs) systems are composed of a large number of satellites, beams and terrestrial devices. Due to their multinode dynamic nature, the usage of frequency resources is variable, complex and difficult to characterize. In particular, with the development of satellite-borne phased array antenna technology, SatCom beams carrying different frequencies are directionally and dynamically distributed in global scale. Mapping and locating the spatial beam distributions of communication satellite (comm-satellite) are the bases of intersystem cofrequency interference mitigation and spatial frequency reuse. In this paper, we design a data selection–multiparameter fitting iteration (DS-MFI) algorithm on the basis of ground-based omnidirectional antennas. The proposed approach can effectively map the spatial distribution of comm-satellite's beam, including satellite transmitter position, equal-gain off-axis angle, and beam pointing in azimuth and elevation. Simulation results verify the effectiveness of the proposed approach for satellites with fixed or steerable beams at different altitudes. Furthermore, the results become increasingly accurate as the dense of ground omni-antenna increases.
期刊介绍:
The journal covers all aspects of the theory, practice and operation of satellite systems and networks. Papers must address some aspect of satellite systems or their applications. Topics covered include:
-Satellite communication and broadcast systems-
Satellite navigation and positioning systems-
Satellite networks and networking-
Hybrid systems-
Equipment-earth stations/terminals, payloads, launchers and components-
Description of new systems, operations and trials-
Planning and operations-
Performance analysis-
Interoperability-
Propagation and interference-
Enabling technologies-coding/modulation/signal processing, etc.-
Mobile/Broadcast/Navigation/fixed services-
Service provision, marketing, economics and business aspects-
Standards and regulation-
Network protocols