On the motivic Segal conjecture

Pub Date : 2023-09-06 DOI:10.1112/topo.12311
Thomas Gregersen, John Rognes
{"title":"On the motivic Segal conjecture","authors":"Thomas Gregersen,&nbsp;John Rognes","doi":"10.1112/topo.12311","DOIUrl":null,"url":null,"abstract":"<p>We establish motivic versions of the theorems of Lin and Gunawardena, thereby confirming the motivic Segal conjecture for the algebraic group <math>\n <semantics>\n <msub>\n <mi>μ</mi>\n <mi>ℓ</mi>\n </msub>\n <annotation>$\\mu _\\ell$</annotation>\n </semantics></math> of <math>\n <semantics>\n <mi>ℓ</mi>\n <annotation>$\\ell$</annotation>\n </semantics></math>th roots of unity, where <math>\n <semantics>\n <mi>ℓ</mi>\n <annotation>$\\ell$</annotation>\n </semantics></math> is any prime. To achieve this we develop motivic Singer constructions associated to the symmetric group <math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mi>ℓ</mi>\n </msub>\n <annotation>$S_\\ell$</annotation>\n </semantics></math> and to <math>\n <semantics>\n <msub>\n <mi>μ</mi>\n <mi>ℓ</mi>\n </msub>\n <annotation>$\\mu _\\ell$</annotation>\n </semantics></math>, and introduce a delayed limit Adams spectral sequence.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12311","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We establish motivic versions of the theorems of Lin and Gunawardena, thereby confirming the motivic Segal conjecture for the algebraic group  μ $\mu _\ell$ of $\ell$ th roots of unity, where $\ell$ is any prime. To achieve this we develop motivic Singer constructions associated to the symmetric group  S $S_\ell$ and to  μ $\mu _\ell$ , and introduce a delayed limit Adams spectral sequence.

Abstract Image

分享
查看原文
关于motivic-Segal猜想
我们建立了Lin定理和Gunawardena定理的动机版本,从而证实了对于单位n根的代数群μ r $\mu _\ell$的动机Segal猜想,其中,r $\ell$是任意素数。为此,我们建立了对称群S $S_\ell$和μ $S_\ell$的动机Singer结构,并引入了延迟极限Adams谱序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信