Siavash Salemi, Hamed Behzadi-Khormouji, H. Rostami, Ahmad Keshavarz, Yaser Keshavarz, Yahya Tabesh
{"title":"Incremental deep learning training approach for lesion detection and classification in mammograms","authors":"Siavash Salemi, Hamed Behzadi-Khormouji, H. Rostami, Ahmad Keshavarz, Yaser Keshavarz, Yahya Tabesh","doi":"10.35470/2226-4116-2022-11-4-234-245","DOIUrl":null,"url":null,"abstract":"Recently, Deep Convolutional Neural Networks (DCNNs) have opened their ways into various medical image processing practices such as Computer-Aided Diagnosis (CAD) systems. Despite significant developments in CAD systems based on deep models, designing an efficient model, as well as a training strategy to cope with the shortage of medical images have yet to be addressed. To address current challenges, this paper presents a model including a hybrid DCNN, which takes advantage of various feature maps of different deep models and an incremental training algorithm. Also, a weighting Test Time Augmentation strategy is presented. Besides, the proposed work develops the Mask-RCNN to not only detect mass and calcification in mammography images, but also to classify normal images. Moreover, this work aims to benefit from a radiology specialist to compare with the performance of the proposed method. Illustrating the region of interest to explain how the model makes decisions is the other aim of the study to cover existing challenges among the stateof-the-art research works. The wide range of conducted quantitative and qualitative experiments suggest that the proposed method can classify breast X-ray images of the INbreast dataset to normal, mass, and calcification.","PeriodicalId":37674,"journal":{"name":"Cybernetics and Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35470/2226-4116-2022-11-4-234-245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, Deep Convolutional Neural Networks (DCNNs) have opened their ways into various medical image processing practices such as Computer-Aided Diagnosis (CAD) systems. Despite significant developments in CAD systems based on deep models, designing an efficient model, as well as a training strategy to cope with the shortage of medical images have yet to be addressed. To address current challenges, this paper presents a model including a hybrid DCNN, which takes advantage of various feature maps of different deep models and an incremental training algorithm. Also, a weighting Test Time Augmentation strategy is presented. Besides, the proposed work develops the Mask-RCNN to not only detect mass and calcification in mammography images, but also to classify normal images. Moreover, this work aims to benefit from a radiology specialist to compare with the performance of the proposed method. Illustrating the region of interest to explain how the model makes decisions is the other aim of the study to cover existing challenges among the stateof-the-art research works. The wide range of conducted quantitative and qualitative experiments suggest that the proposed method can classify breast X-ray images of the INbreast dataset to normal, mass, and calcification.
期刊介绍:
The scope of the journal includes: -Nonlinear dynamics and control -Complexity and self-organization -Control of oscillations -Control of chaos and bifurcations -Control in thermodynamics -Control of flows and turbulence -Information Physics -Cyber-physical systems -Modeling and identification of physical systems -Quantum information and control -Analysis and control of complex networks -Synchronization of systems and networks -Control of mechanical and micromechanical systems -Dynamics and control of plasma, beams, lasers, nanostructures -Applications of cybernetic methods in chemistry, biology, other natural sciences The papers in cybernetics with physical flavor as well as the papers in physics with cybernetic flavor are welcome. Cybernetics is assumed to include, in addition to control, such areas as estimation, filtering, optimization, identification, information theory, pattern recognition and other related areas.