Commutative graded-S-coherent rings

IF 0.4 4区 数学 Q4 MATHEMATICS
Anass Assarrar, N. Mahdou, Ünsal Tekir, Suat Koç
{"title":"Commutative graded-S-coherent rings","authors":"Anass Assarrar, N. Mahdou, Ünsal Tekir, Suat Koç","doi":"10.21136/CMJ.2023.0130-22","DOIUrl":null,"url":null,"abstract":"Recently, motivated by Anderson, Dumitrescu’s S-finiteness, D. Bennis, M. El Hajoui (2018) introduced the notion of S-coherent rings, which is the S-version of coherent rings. Let R=⊕α∈GRα\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$R = \\mathop \\oplus \\limits_{\\alpha \\in G} {R_\\alpha }$$\\end{document} be a commutative ring with unity graded by an arbitrary commutative monoid G, and S a multiplicatively closed subset of nonzero homogeneous elements of R. We define R to be graded-S-coherent ring if every finitely generated homogeneous ideal of R is S-finitely presented. The purpose of this paper is to give the graded version of several results proved in D. Bennis, M. El Hajoui (2018). We show the nontriviality of our generalization by giving an example of a graded-S-coherent ring which is not S-coherent and as a special case of our study, we give the graded version of the Chase’s characterization of S-coherent rings.","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":"73 1","pages":"553 - 564"},"PeriodicalIF":0.4000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Czechoslovak Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/CMJ.2023.0130-22","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, motivated by Anderson, Dumitrescu’s S-finiteness, D. Bennis, M. El Hajoui (2018) introduced the notion of S-coherent rings, which is the S-version of coherent rings. Let R=⊕α∈GRα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R = \mathop \oplus \limits_{\alpha \in G} {R_\alpha }$$\end{document} be a commutative ring with unity graded by an arbitrary commutative monoid G, and S a multiplicatively closed subset of nonzero homogeneous elements of R. We define R to be graded-S-coherent ring if every finitely generated homogeneous ideal of R is S-finitely presented. The purpose of this paper is to give the graded version of several results proved in D. Bennis, M. El Hajoui (2018). We show the nontriviality of our generalization by giving an example of a graded-S-coherent ring which is not S-coherent and as a special case of our study, we give the graded version of the Chase’s characterization of S-coherent rings.
交换梯度s -相干环
Recently, motivated by Anderson, Dumitrescu’s S-finiteness, D. Bennis, M. El Hajoui (2018) introduced the notion of S-coherent rings, which is the S-version of coherent rings. Let R=⊕α∈GRα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R = \mathop \oplus \limits_{\alpha \in G} {R_\alpha }$$\end{document} be a commutative ring with unity graded by an arbitrary commutative monoid G, and S a multiplicatively closed subset of nonzero homogeneous elements of R. We define R to be graded-S-coherent ring if every finitely generated homogeneous ideal of R is S-finitely presented. The purpose of this paper is to give the graded version of several results proved in D. Bennis, M. El Hajoui (2018). We show the nontriviality of our generalization by giving an example of a graded-S-coherent ring which is not S-coherent and as a special case of our study, we give the graded version of the Chase’s characterization of S-coherent rings.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Czechoslovak Mathematical Journal publishes original research papers of high scientific quality in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信