Remarks on the balanced metric on Hartogs triangles with integral exponent

IF 0.4 4区 数学 Q4 MATHEMATICS
Qiannan Zhang, Hua Yang
{"title":"Remarks on the balanced metric on Hartogs triangles with integral exponent","authors":"Qiannan Zhang, Hua Yang","doi":"10.21136/CMJ.2023.0208-22","DOIUrl":null,"url":null,"abstract":"In this paper we study the balanced metrics on some Hartogs triangles of exponent γ ∈ ℤ+, i.e. equipped with a natural Kähler form with where μ = (μ1, …, μn), μi > 0, depending on n parameters. The purpose of this paper is threefold. First, we compute the explicit expression for the weighted Bergman kernel function for (Ωn(γ),g(μ)) and we prove that g(μ) is balanced if and only if μ1 > 1 and γμ1 is an integer, μi are integers such that μi ≽ 2 for all i = 2, …, n − 1, and μn > 1. Second, we prove that g(μ) is Kähler-Einstein if and only if μ1 = μ2 = … = μn = 2λ, where λ is a nonzero constant. Finally, we show that if g(μ) is balanced then (Ωn(γ),g(μ)) admits a Berezin-Engliš quantization.","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":"73 1","pages":"633 - 647"},"PeriodicalIF":0.4000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Czechoslovak Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/CMJ.2023.0208-22","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study the balanced metrics on some Hartogs triangles of exponent γ ∈ ℤ+, i.e. equipped with a natural Kähler form with where μ = (μ1, …, μn), μi > 0, depending on n parameters. The purpose of this paper is threefold. First, we compute the explicit expression for the weighted Bergman kernel function for (Ωn(γ),g(μ)) and we prove that g(μ) is balanced if and only if μ1 > 1 and γμ1 is an integer, μi are integers such that μi ≽ 2 for all i = 2, …, n − 1, and μn > 1. Second, we prove that g(μ) is Kähler-Einstein if and only if μ1 = μ2 = … = μn = 2λ, where λ is a nonzero constant. Finally, we show that if g(μ) is balanced then (Ωn(γ),g(μ)) admits a Berezin-Engliš quantization.
积分指数Hartogs三角形的平衡度规的注释
本文研究了指数γ∈0 +的Hartogs三角形上的平衡度量,即具有自然的Kähler形式,其中μ = (μ1,…,μn), μi >,依赖于n个参数。本文的目的有三个。首先,我们计算了(Ωn(γ),g(μ))的加权Bergman核函数的显式表达式,证明了g(μ)是平衡的,当且仅当μ1 > 1和γμ1是整数,μi是整数,使得μi对所有i = 2,…,n−1,和μn > 1都是整数。其次,证明了g(μ)当且仅当μ1 = μ2 =…= μn = 2λ时为Kähler-Einstein,其中λ为非零常数。最后,我们证明了如果g(μ)是平衡的,那么(Ωn(γ),g(μ))允许berezin - english量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Czechoslovak Mathematical Journal publishes original research papers of high scientific quality in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信