Production and optimization of the refractory properties of blended Nigerian clay for high-temperature application; a non-stochastic optimization approach
Hassan Abubakar Adamu, B. Samuel, Abutu Joseph, Samuel Samuel Okon, Iliyasu Idris Kirim
{"title":"Production and optimization of the refractory properties of blended Nigerian clay for high-temperature application; a non-stochastic optimization approach","authors":"Hassan Abubakar Adamu, B. Samuel, Abutu Joseph, Samuel Samuel Okon, Iliyasu Idris Kirim","doi":"10.1088/2631-6331/acc9fb","DOIUrl":null,"url":null,"abstract":"High-performance materials, systems, and processes have necessitated the exploration of very high-temperature environments. Materials, particularly ceramics, which can withstand these high temperatures, have been extensively studied, even though enough emphasis has not been given to clays sourced locally in Nigeria, where there is an abundance. Also, stochastic optimization techniques has been employed to improve on system or carry out experimentation with minimal spend of resources and very high accuracy. This work extensively explored the refractory properties of blends developed from locally sourced clays (Mayo Ndaga and kachalla Sembe and Kona). The Taguchi optimization technique was employed to determine the effect of various quantities of the clays on the loss on ignition (LOI), refractoriness (RF), and firing shrinkage (FS) of the blends. It was discovered that the optimum (lowest) LOI, highest RF, and lowest FS were 11%, 1333 °C, and 0.48%, respectively. Analysis of variance also proved the significance of Mayo Ndaga on the RF and FS of the blends, with P-values of 0.038 and 0.000 at a 95% confidence level.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Composites and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-6331/acc9fb","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
High-performance materials, systems, and processes have necessitated the exploration of very high-temperature environments. Materials, particularly ceramics, which can withstand these high temperatures, have been extensively studied, even though enough emphasis has not been given to clays sourced locally in Nigeria, where there is an abundance. Also, stochastic optimization techniques has been employed to improve on system or carry out experimentation with minimal spend of resources and very high accuracy. This work extensively explored the refractory properties of blends developed from locally sourced clays (Mayo Ndaga and kachalla Sembe and Kona). The Taguchi optimization technique was employed to determine the effect of various quantities of the clays on the loss on ignition (LOI), refractoriness (RF), and firing shrinkage (FS) of the blends. It was discovered that the optimum (lowest) LOI, highest RF, and lowest FS were 11%, 1333 °C, and 0.48%, respectively. Analysis of variance also proved the significance of Mayo Ndaga on the RF and FS of the blends, with P-values of 0.038 and 0.000 at a 95% confidence level.